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6. Extended discussion
While we stated that probabilist interpretation of COSTARR
depends on an accurate classifier, it is interesting to note
that in 2 the gap over the prior state of the art (PostMax)
is largest for ResNet-50, which is the weakest network in
terms of closed set accuracy, suggesting there is more to the
improvements than just the probabilistic interpretation.

In the ablation, 3, we see that for ResNet50, the Hadamard
only version, with only post-attentive features, did much
worse than using only the Features. We hypothesize that
maybe the gains for ResNet50 in other tables are from
the concatenation with Features improving class separation
beyond that the logit/Hadamard feature can provide. For
Resnet50 with Textures as the unknown, adding the logit
did not really improve things, again, maybe suggesting the
post-attenuation Hadamard features are weaker in ResNet.

The weakest element of the ablation was the difference
between NoLogit and COSTARR, which for two networks
there was one dataset where the results without the logit
were nearly identical to the overall COSTARR, though the
differences were not statistically different. We note that the
full COSTARR with logit version is actually cheap at test
time since we access only the mean for the max logit class
and already have the logit value from that computation.

7. Metrics Cont.
For completeness, we include Open-Set Accuracy (OSA)
curves in Fig. 4-6. Note, the operational performance
(OOSA) reported in Tab. 1, is indicated by a ⋆ on each curve.
Consistent with the tabular results, COSTARR achieves max-
imum OSA across all datasets.

In addition to OOSA and AUOSCR metrics included in
the main paper, we also evaluated methods using Open-Set
Classification Rate (OSCR) curves, shown in Fig. 7-9. Simi-
lar to OOSA (Tab. 1) and AUROC in (Tab. 5), COSTARR
outperforms all methods across all datasets.

8. Different OOSA Validation
For consistency of comparison with prior work, we also
report performance on the same validation from Cruz et
al. [7] in Tab. 4: ImageNetV2 (10K images) as knowns and
21K-P Hard (9.8K images) as unknowns with their ”contaim-
inated” validation process. Similar to the results in Tab. 1,
COSTARR outperforms all methods across all architectures
except ViT-H.

A
rc

h

Method iNat NINCO Open-O Text

R
es

N
et

-5
0

SCALE 0.532 0.402 0.634 0.386
NNGuide 0.513 0.385 0.647 0.357
MaxLogit 0.669 0.584 0.707 0.565

MSP 0.702 0.617 0.747 0.606
PostMax 0.571 0.452 0.689 0.431

COSTARR 0.718 0.627 0.789 0.627

C
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vN
eX

t-
L

SCALE 0.683 0.638 0.664 0.659
NNGuide 0.583 0.447 0.662 0.450
MaxLogit 0.740 0.682 0.728 0.693

MSP 0.773 0.701 0.791 0.706
PostMax 0.794 0.698 0.830 0.722

COSTARR 0.801 0.721 0.846 0.730
C

on
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eX
tV

2-
H SCALE 0.772 0.705 0.767 0.740

NNGuide 0.713 0.597 0.745 0.601
MaxLogit 0.786 0.718 0.792 0.740

MSP 0.796 0.723 0.820 0.736
PostMax 0.812 0.732 0.849 0.744

COSTARR 0.819 0.739 0.857 0.752

V
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SCALE 0.748 0.671 0.706 0.718
NNGuide 0.636 0.552 0.661 0.544
MaxLogit 0.788 0.711 0.755 0.742

MSP 0.794 0.717 0.809 0.727
PostMax 0.826 0.732 0.861 0.761

COSTARR 0.834 0.759 0.872 0.773
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SCALE 0.727 0.667 0.663 0.715
NNGuide 0.782 0.625 0.796 0.660
MaxLogit 0.780 0.707 0.745 0.736

MSP 0.815 0.739 0.814 0.756
PostMax 0.825 0.740 0.864 0.764

COSTARR 0.852 0.782 0.883 0.797

Table 4. OPERATIONAL OPEN-SET ACCURACY. The mean OOSA
(↑) of all methods on the validation from Cruz et al. [7]. To pre-
dict an operational threshold, we validate the methods using Im-
ageNetV2 [31] (10K images) as knowns and 21K-P Hard [40]
(9.8K images) as unknowns. Then, each method’s threshold is
deployed and tested on five different ILSVRC2012 val [33] splits
(each containing 10K images) and specified unknowns. OSR is
performed on extractions from various pre-trained architectures.
COSTARR (ours) is the final method in each network series and the
best scores for each respective architecture and unknowns dataset
are in bold.
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Figure 3. HISTOGRAM OF CLASS-WEIGHTS. The spread of Min (horizontal stripes), Mean (diagonal stripes), and Max (vertical stripes)
weights per dimension across all classes illustrate how any given feature can be discarded by the classification layer of a DNN (Hiera-H
pictured). The Maximum weights are all reasonably above 0, indicating that each feature dimension is useful to some class. The minimum
weights all approach 0, indicating that there is a class that ignores each feature. Since the Mean weights tend closer to 0 than to the mean of
the max weights, feature dimensions are more often ignored (by having their contribution attenuated) rather than being strong contributors
to the final logit. The bottom three color bars visualize how often this occurs across every class in ImageNet, with the absolute value
per-dimension frequency of each weight visualized. The bars are different widths due to the different feature dimensions from each network.
Each pixel in the 80-pixel-tall columns represents a bin from the range between 0 and the absolute maximum weight of all dimensions
and classes; brightness indicates frequency (using the “gist ncar” color scheme). The concentration near of bright green near the bottom
(approaching 0 weight) shows that every feature dimension most often has its contributions to maximum logit confidence attenuated,
depending on which class’ weights are used. While these dimensions have been weighted to discriminate between known classes, they
ignore information that could help differentiate known from unknown.
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Figure 4. OPEN-SET ACCURACY CURVES. The OSA curves of all methods for ResNet-50 (same experimental setup as Tab. 1). A ⋆
signifies the peak performance (OOSA) of each method.
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Figure 5. OPEN-SET ACCURACY CURVES. The OSA curves of all methods for ConvNeXtV2-H (same experimental setup as Tab. 1). A ⋆
signifies the peak performance (OOSA) of each method.
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Figure 6. OPEN-SET ACCURACY CURVES. The OSA curves of all methods for Hiera-H (same experimental setup as Tab. 1). A ⋆ signifies
the peak performance (OOSA) of each method.
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Figure 7. OPEN-SET CLASSIFICATION RATE CURVES. The OSCR curves of all methods for ResNet-50 (same experimental setup as
Tab. 5).
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Figure 8. OPEN-SET CLASSIFICATION RATE CURVES. The OSCR curves of all methods for ConvNeXtV2-H (same experimental setup as
Tab. 5).
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Figure 9. OPEN-SET CLASSIFICATION RATE CURVES. The OSCR curves of all methods for Hiera-H (same experimental setup as Tab. 5).
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SCALE 0.756 0.604 0.663 0.729
NNGuide 0.715 0.492 0.656 0.665
MaxLogit 0.804 0.729 0.777 0.714

COMBOOD† 0.871 N/A 0.866 0.970
MSP 0.848 0.768 0.823 0.774

PostMax 0.882 0.722 0.862 0.852
COSTARR 0.931 0.816 0.910 0.905

C
on

vN
eX

t-
L

SCALE 0.773 0.721 0.734 0.76
NNGuide 0.676 0.52 0.704 0.507
MaxLogit 0.836 0.765 0.794 0.792

MSP 0.876 0.799 0.848 0.823
PostMax 0.920 0.817 0.911 0.880

COSTARR 0.944 0.863 0.934 0.912

C
on

vN
eX

tV
2-

H SCALE 0.878 0.803 0.849 0.879
NNGuide 0.860 0.715 0.811 0.731
MaxLogit 0.899 0.820 0.869 0.881

MSP 0.908 0.831 0.883 0.873
PostMax 0.949 0.864 0.940 0.912

COSTARR 0.954 0.875 0.946 0.925

V
iT

-H

SCALE 0.847 0.742 0.767 0.842
NNGuide 0.728 0.525 0.758 0.493
MaxLogit 0.889 0.786 0.817 0.858

MSP 0.910 0.828 0.869 0.867
PostMax 0.957 0.857 0.947 0.925

COSTARR 0.970 0.896 0.959 0.942

H
ie
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-H

SCALE 0.814 0.725 0.716 0.829
NNGuide 0.896 0.690 0.881 0.744
MaxLogit 0.883 0.786 0.802 0.860

MSP 0.920 0.835 0.875 0.881
PostMax 0.959 0.872 0.953 0.930

COSTARR 0.973 0.907 0.963 0.947

Table 5. AREA UNDER RECEIVER OPERATING CHARACTER-
ISTIC CURVE. The AUROC (↑) of all methods. To compute,
we tested methods using ILSVRC2012 val [33] (50K images) as
knowns and specified unknowns. COSTARR (ours) is the final
method in each network series and the best scores for each respec-
tive architecture and unknowns dataset are in bold. † indicates a
result has been transposed from [30].



9. Statistical Testing
In Tables 6, 7, 8, and 9 we present P-values from statis-
tical testing of COSTARR vs different algorithms on dif-
ferent architectures and datasets for validation and testing.
COSTARR is statistically significantly better in almost all
cases and is never statistically worse.

While [7] introduce splits and a testing procedure, we
modified that process somewhat for this paper. For the splits
for the knowns, there are non-overlapping samples from
each class, and a set of unknowns varies by dataset, so they
assumed independence and used two-sided paired t-tests. But
when combining data over different architectures or different
unknown sets, the independence breaks down. Thus we use
Wilcoxon signed rank test, as implemented in scipy, with
Bonferroni correction to account for the different number of
tests being considered.

We obtained the splits from them and recomputed statisti-
cal significance using Wilcoxon signed rank test, as imple-
mented in scipy, with Bonferroni correction. The results do
not significantly change the conclusions from their paper,
but we could only answer that by doing the proper non-
parametric test. This also sets up the work so that future tests
can properly compare with COSTARR. The splits will be
included in with released code.



Net / Alg PostMax MSP MaxLogit NNGuide SCALE
Reset-50 P-Value (N=15) 1.82E-08 1.16E-09 7.93E-12 3.87E-12 2.88E-15
ConvNext-L P-Value (N=15) 1.31E-07 1.24E-11 1.82E-10 5.70E-17 2.11E-11
ConvNextV2-H P-Value (N=15) 5.23E-10 1.79E-09 5.03E-09 1.73E-15 2.08E-10
ViT-H P-Value (N=15) 8.81E-06 1.09E-10 9.13E-11 2.15E-14 5.99E-12
Hiera-H P-Value (N=15) 9.24E-05 2.24E-11 8.01E-11 1.45E-09 2.26E-11
Overall P-Value (N=75) 9.35E-12 1.78E-37 3.02E-39 1.48E-30 5.28E-30

Table 6. STATISTICS COMPARING OOSA PERFORMANCE OF COSTARR VS. DIFFERENT ALGORITHMS ON ”CLEAN DATA” WHERE

OPEN-IMAGES IS A SURROGATE SET. P-values of the null hypothesis: that the mean performance is the same as COSTARR. This uses a
subset of Open-Images as the surrogate set to select the threshold for the given network. The statistics corresponding to each architecture
use five different splits of the validation data and unknowns drawn from the full set of iNaturalist, NINCO, and OpenImage O. There are
N=15 runs per architecture and 75 runs overall. Since OOSA computes thresholds directly on the surrogate set, there are NO free/tuned
parameters in these experiments for any architecture. This is computed by Wilcoxon signed rank test with Bonferroni correction. All tests
are statistically very significant.

Net / Alg PostMax MSP MaxLogit NNGuide SCALE
Reset-50 P-value (N=40) 4.163E-08 3.067E-11 2.341E-21 3.955E-11 3.953E-21
ConvNext-L P-value (N=40) 6.710E-05 6.181E-08 4.354E-20 8.862E-15 7.392E-23
ConvNextV2-H P-value (N=40) 1.433E-03 2.152E-01 3.098E-15 3.385E-09 1.910E-18
ViT-H P-value (N=40) 1.006E-04 2.967E-07 3.704E-19 2.368E-18 6.521E-24
Hiera-H P-value (N=40) 1.372E-04 4.188E-11 5.033E-23 1.849E-13 1.549E-24
Overall P-value (N=200) 9.354-12 1.784-37 3.025E-39 1.484E-30 5.282E-30

Table 7. STATISTICS COMPARING OOSA PERFORMANCE OF COSTARR VS. DIFFERENT ALGORITHMS ON ”CONTAMINATED DATA”
WHERE OPEN-IMAGES IS SURROGATE SET. P-values of null hypothesis: that the mean performance is the same as COSTARR. This uses a
subset of Open-Images as the surrogate set to select the threshold for the given network. The statistics corresponding to each architecture
use five different splits of the validation data and unknowns drawn from the full set of iNaturalist, NINCO, OpenImage O, Places, SUN,
Textures, easy i21k, and hard i21k, so it includes results where many corrupted/overlapping classes/images, with N=40 runs per architecture
and 200 overall. Since OOSA computes thresholds directly on the surrogate set, there are NO free/tuned parameters in these experiments for
any architecture. This is computed by Wilcoxon signed rank test with Bonferroni correction. All tests except ConvNextV2-H for MSP
(shown in purple) are statistically very significant.

Net/Alg PostMax MSP MaxLogit NNGuide SCALE
Reset-50 P-value (N=15) 1.25E-11 7.72E-09 1.28E-09 3.83E-13 6.07E-13
ConvNext-L P-value (N=15) 3.95E-08 1.58E-08 2.36E-09 4.11E-13 1.19E-10
ConvNextV2-H P-value (N=15) 9.43E-08 4.15E-08 2.15E-08 4.23E-10 9.27E-09
ViT-H P-value (N=15) 4.34E-08 8.18E-09 1.41E-09 1.66E-11 1.08E-10
Hiera-H P-value (N=15) 3.60E-08 1.43E-08 1.62E-09 1.19E-09 7.53E-11
Overall P-value (N=75) 3.01E-06 6.41E-30 7.56E-33 7.95E-30 3.32E-32

Table 8. STATISTICS COMPARING OOSA PERFORMANCE OF COSTARR VS. DIFFERENT ALGORITHMS WHERE HARD I21K IS A

SURROGATE SET WITH NON-CONTAMINATED UNKNOWN SETS. P-values of the null hypothesis: that the mean performance is the same as
COSTARR. This uses a subset of hard i21k as the surrogate set to select the threshold for the given network. The statistics corresponding to
each architecture use five different splits of the validation data and unknowns drawn from the non-contaminated set of iNaturalist, NINCO,
and OpenImage O. It has N=15 runs per architecture and 75 overall. This is computed by Wilcoxon signed rank test with Bonferroni
correction. All tests are statistically very significant.



Net / Alg PostMax MSP MaxLogit NNGuide SCALE
Reset-50 P-Value (N=36) 2.89E-12 4.27E-24 1.31E-30 3.11E-13 1.40E-17
ConvNext-L P-Value (N=36) 4.18E-07 9.78E-18 3.43E-14 1.58E-13 2.36E-17
ConvNextV2-H P-Value (N=36) 1.41E-02 1.59E-10 4.42E-09 1.43E-15 1.66E-09
ViT-H P-value (N=36) 7.77E-01 1.29E-15 1.33E-09 3.98E-16 1.56E-13
Hiera-H P-Value (N=36) 4.28E-06 2.07E-19 6.17E-19 4.64E-14 3.91E-18
Overall P-Value (N=176) 3.83E-10 4.85E-71 5.31E-60 1.50E-53 1.27E-60

Table 9. STATISTICS COMPARING OOSA PERFORMANCE OF COSTARR VS. DIFFERENT ALGORITHMS WHERE HARD I21K IS A

SURROGATE SET, SIMILAR TO THAT USED IN POSTMAX PAPER. P-values of the null hypothesis that the mean performance is the same as
COSTARR. This uses a subset of hard i21k as the surrogate set to select the threshold for the given network. The statistics corresponding to
each architecture use five different splits of the validation data and unknowns drawn from the full set of iNaturalist, NINCO, OpenImage O,
Places, SUN, Textures, easy i21k, so it includes results where many corrupted/overlapping classes/images, with N=36 runs per architecture
and 176 overall, which is slightly less than when Open-Images is used for the surrogate set. Since OOSA computes thresholds directly on
the surrogate set, there are NO free/tuned parameters in these experiments for any architecture. This is computed by paired two-sided t-tests
with Bonferroni correction. All tests except ViT-H for PostMax (shown in purple) are statistically very significant.



10. Contamination
Given the recent in-distribution contamination analysis per-
formed by Bitterwolf et al. [3], we excluded any datasets
with >20% contamination from the main paper. However,
to report performance on datasets used in prior SOTA eval-
uations [7], we show results in Tab. 10. Note, COSTARR
models per-class confidence, so any significant overlap will
hinder performance. Nonetheless, overall performance is
still statistically significant as shown in Sec. 9.

To analyze how in-distribution contaminated unknown
datasets degrade evaluations, we examined the images re-
sponsible for the performance difference between PostMax
and COSTARR for the Places and SUN datasets. At the
validation-predicted OOSA threshold, we looked at samples
which PostMax said were unknown, but COSTARR labeled
as known. We compared these images with ImageNet train-
ing data from the closed-set predicted class. From Places, we
found every image within this performance gap has visually
significant overlap with ImageNet training data, from SUN
we found the same holds for nearly every image. We include
all images from these examinations in Figures 10 & 11 for
Places and Figures 12 and 13. Labeling images as unknown
while they are visually represented in the training set hinders
OSR and OOD evaluations. We can see from these figures,
the images responsible for COSTARR’s seemingly inferior
performance to PostMax are actually knowns which have
been mislabeled as unknowns. Of course, all algorithms are
affected by the presence of these mislabeled images. When
contaminated dataset is used as unknowns, even a perfect
OSR system will have a reduced OOSA and AUROC score.
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0

SCALE 0.503 0.539 0.382 0.355
NNGuide 0.607 0.626 0.776 0.487
MaxLogit 0.631 0.652 0.632 0.535

MSP 0.679 0.696 0.687 0.573
PostMax 0.690 0.719 0.739 0.485

COSTARR 0.691 0.726 0.727 0.535

C
on

vN
eX

t-
L

SCALE 0.588 0.617 0.514 0.492
NNGuide 0.683 0.699 0.656 0.464
MaxLogit 0.652 0.675 0.586 0.535

MSP 0.722 0.733 0.704 0.620
PostMax 0.752 0.773 0.733 0.533

COSTARR 0.739 0.767 0.743 0.582
C

on
vN

eX
tV

2-
H SCALE 0.667 0.681 0.580 0.515

NNGuide 0.720 0.727 0.720 0.552
MaxLogit 0.707 0.721 0.637 0.560

MSP 0.750 0.755 0.728 0.648
PostMax 0.779 0.790 0.740 0.572

COSTARR 0.730 0.748 0.712 0.565

V
iT

-H

SCALE 0.637 0.672 0.569 0.510
NNGuide 0.700 0.696 0.554 0.393
MaxLogit 0.692 0.717 0.632 0.566

MSP 0.739 0.751 0.704 0.627
PostMax 0.765 0.784 0.732 0.541

COSTARR 0.754 0.781 0.742 0.588

H
ie

ra
-H

SCALE 0.624 0.649 0.520 0.480
NNGuide 0.749 0.756 0.677 0.485
MaxLogit 0.693 0.710 0.608 0.548

MSP 0.746 0.752 0.698 0.622
PostMax 0.773 0.785 0.727 0.548

COSTARR 0.765 0.786 0.743 0.612

Table 10. OPERATIONAL OPEN-SET ACCURACY. The mean
OOSA (↑) of all methods on the contaminated datasets (same ex-
perimental setup as Tab. 1), which have significant overlap with
ImageNet data [3]. We additionally validated this overlap for Places
[49] and SUN [43] in Figures 10, 11, 12 and 11. COSTARR (ours)
is, and the best scores for each respective architecture and un-
knowns dataset are in bold.



Figure 10. DATA CONTAMINATION IN PLACES. We analyzed images from the OOD dataset Places [49] (red bordered images) compared
with Imagenet training images (green bordered images). To select OOD images from Places[49], we examined the validation threshold
for PostMax and COSTARR on ViT-H, then selected those images from Places which PostMax would label unknown, but COSTARR
would label known. Between this figure and Figure 11, we present every image satisfying this constraint, hence, these images are directly
responsible for the performance difference between the algorithms (in terms of OOSA). To select ImageNet training images, we examined
all images from the closed-set prediction class (the known class the network predicted the unknown image was) and selected the closest one.
As all the images from Places (red bordered) are treated as unknowns and the networks has seen all of the ImageNet training data (green
bordered), these falsely labeled unknowns are actually hindering the evaluation, given the clear overlap between known training data and
supposed unknowns. The presence of these mislabeled unknowns is consistent with NINCO’s [3] observations, partially validating their
claim of in-distribution dataset contamination.



Figure 11. DATA CONTAMINATION IN PLACES. Continuation of Figure 10, showing overlap between Places [49] (red bordered images) and
ImageNet training data (green bordered images). The overlap between known training data and test data mislabeled as unknowns hinders
evaluations, as correctly identifying a known image (which is mislabeled as unknown) will incorrectly penalize an algorithm’s score.



Figure 12. DATA CONTAMINATION IN SUN. We analyzed images from the OOD dataset SUN [43] (red bordered images) compared
with ImageNet training images (green bordered images). To select OOD images from SUN [43], we examined the validation threshold
for PostMax and COSTARR on ViT-H, then selected those images from Places which PostMax would label unknown, but COSTARR
would label known. Between this figure and Figure 13, we present every image satisfying this constraint, hence, these images are directly
responsible for the performance difference between the algorithms (in terms of OOSA). To select ImageNet training images, we examined
all images from the closed-set prediction class (the known class the network predicted the unknown image was) and selected the closest
one. As all the images from SUN (red bordered) are treated as unknowns and the network has seen all of the ImageNet training data (green
bordered), these falsely labeled unknowns are actually hindering the evaluation, given the clear overlap between known training data and
supposed unknowns.



Figure 13. DATA CONTAMINATION IN SUN. Continuation of Figure 12, showing overlap between SUN [43] (red bordered images) and
ImageNet training data (green bordered images). The overlap between known training data and test data mislabeled as unknowns hinders
evaluations, as correctly identifying a known image (which is mislabeled as unknown) will incorrectly penalize an algorithm’s score.
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