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Supplementary Material

This section contains supplementary material that pro-
vides additional details for the main paper and further ex-
perimental analysis. This section follows the contents in
the following order.
• Methodology - Preliminary Details.
• Early disentanglement.

A. Methodology - Preliminary Details
Contrastive Language-Image Pre-training (CLIP): In
the paradigm of multi-modal training, CLIP [21] introduces
a dual-encoder architecture for the vision and text modal-
ities. Extensive pair of images and its associated caption
is used to train these encoders. The caption encoded by
the textual encoder f is mapped to a textual feature space
whereas its associated image encoded by the vision encoder
g is mapped on to a visual feature space. The ultimate goal
is to align the image and text features belonging to a cor-
responding pair of images whereas repel other textual and
visual features away through contrastive learning approach.
For the downstream task of image classification, CLIP can
be employed in a prompt-based approach. In zero-shot
classification, rather than undergoing additional training on
the specific target classes (e.g., ”dog” or ”car”) within the
dataset, CLIP leverages hand-crafted text prompts such as
“a photo of a [CLASS]”, pass it through the textual en-
coder and obtain the textual embeddings corresponding to
c classes where c ∈ {1, ..., C}. Given a new image xtest,
CLIP computes its prediction probability p(c|xtest) using
the similarity between the image embeddings and embed-
dings of each class prompt, effectively identifying which
class label best aligns with the image based on pre-existing
learned associations. This process enables CLIP to perform
classification without direct exposure to task-specific data,
facilitating adaptability across various classification tasks.

p(c|xtest) =
exp(sim(ztest,wc)/τ)∑C
j=1 exp(sim(ztest,wj/τ)

(11)

Context-Optimization for Language modality (CoOp):
Owing to the tedious task of manual prompt-engineering
to achieve optimal performance using the CLIP model, au-
thors in [31] introduced a sophisticated methodology of us-
ing soft prompts instead of the hand-crafted ones to describe
an image. These soft prompts are learnable textual vector
denoted as v = [v1, v2, ..., vL]. Each vl, l ∈ 1, ..., L is a
vector of the same dimension as the word embeddings and L
is a hyper-parameter which controls the number of context

tokens. Hence, CoOp introduces a soft (learnable) prompt
represented as:

t = [v1, v2, ..., vL,CLASS] (12)

For the downstream task of image classification, CoOp
adapts CLIP for few-shot transfer by fine-tuning the above
continuous set of prompt vectors within its language com-
ponent. For a given set of N training images Dtrain =
(xi, yi)

N
i=1, CoOp computes the class probabilities and min-

imizes the cross-entropy loss Lce to tune the learnable
prompt vector. This optimization problem is expressed as:

t∗ = argmin
t

Lce, (13)

Lce = −
N∑
i=1

yi log p(yi|xi), (14)

p(yi|xi) =
exp(sim(zi, w̃yi

)/τ)∑C
j=1 exp(sim(zi, w̃j)/τ)

, (15)

with zi = f(xi) are the image embeddings for image
xi and w̃yi

= g(tyi
) = g([v, yi]) are the learned textual

embeddings. Here Lce is computed using the similarity be-
tween image and text embeddings zi, w̃yi

respectively.

Context-Optimization with Decoupled Image Features
(CoOp-OOD): One of the shortcomings of the CoOp ap-
proach is its poor generalization capabilities when faced
with novel classes. The reason being learning of spuri-
ous correlations during the fine-tuning stage. Moreover,
using features extracted from the frozen encoders make
CoOp vulnerable to bias and inaccurate learning. To ad-
dress this, authors in [31] propose CoOp-OOD which de-
couples the image features into invariant and spurious com-
ponents through two projection layers, ϕ and ψ. These lay-
ers separate the features without additional encoders. To en-
sure effective decoupling, they employ a structured causal
model that describes the relationships between variables us-
ing conditional independence to minimize the mutual infor-
mation between the invariant and spurious image features.

Multi-Modal Prompt Learning (MaPLe): The concept
of introducing learnable prompt vectors instead of hard-
coded ones was an important step in the direction of prompt
optimization. However, the generalization performance of
CoOp dropped significantly on novel classes and as a result
the authors evolved their learning strategy by conditioning
these soft prompts on image instances during the fine-tuning



stage. They called this method conditional context opti-
mization (Co-CoOp) [30]. Inspired by this work, authors
in [15] designed a Multi-Modal Prompt Learning (MaPLe)
framework, which brings in multi-modal learnable prompt
vectors instead of using conditioned soft prompts for the
text modality alone. The language branch of CLIP consists
of b learnable tokens Pi concatenated with fixed tokens W0

corresponding to the [CLASS] embedding which gets pro-
cessed through J transformer layers of the textual encoder.
Similarly, the vision branch also consists of b learnable to-
kens P̃i concatenated with the input image tokensEi. These
tokens are processed through the transformer layers of the
image encoder up to depth J . The multi-modal prompts
are propagated through the associated transformer layers
of both textual and visual encoders respectively, in order
to achieve better generalization capability. Furthermore,
MaPLe employs “branch-aware” prompt coupling, where
vision prompts P̃ are generated as linear projections of lan-
guage prompts P using a function F(·). This coupling en-
ables mutual gradient propagation and alignment between
the visual and textual features, improving performance.

B. Early disentanglement
To disentangle the invariant and spurious features across
vision-language modalities before the encoding stage, we
incorporate the following strategy:
Feature Decomposition via Early Prompting: We intro-
duce two distinct learnable prompts for each modality (vi-
sion and language): one for the invariant features and an-
other for the spurious features. These prompts are designed
to capture and decouple the task-relevant information (in-
variant) from the noise or spurious correlations. For each
modality, two prompts are introduced: (1) Invariant Tex-
tual Prompt (Px,u): Initialized with a template focused on
invariant features, e.g., “a photo capturing core and

invariant features of a [class]”. (2) Spurious Textual
Prompt (Px,s): Initialized with a template designed to cap-
ture spurious features, e.g., “a photo with features that

keep changing of a [class]”. Each prompt is a learnable
vector that will evolve through the training process.
Projection of Textual Prompts to Visual Prompts: Once
the invariant and spurious prompts for the text modality are
initialized, they are projected into the visual space to in-
fluence the corresponding visual representations. This is
achieved through a linear projection layer for both prompts:
(1) The invariant textual prompt vector Px,u is projected
into the visual space via a learnable linear layer µu, result-
ing in an invariant visual prompt P̃x,u:

P̃x,u = µu(Px,u) (16)

Similarly, the spurious textual prompt vector Px,s is pro-
jected into the visual space using another learnable linear
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Figure 6. An overview of early disentanglement using separate
prompt initializations to disentangle the features before encoding.

layer ηs, resulting in a spurious visual prompt P̃x,s:

P̃x,s = ηs(Px,s) (17)

These projections allow for the disentanglement of the vi-
sual features in the shared visual-language space by guiding
the vision branch’s understanding of invariant and spurious
components separately.
Disentangling Vision and Language Features: The disen-
tanglement process happens early in the pipeline, before the
cross-modal interaction, by ensuring that the vision prompts
P̃x,u and P̃x,s guide the visual encoder in capturing invari-
ant and spurious features, respectively. Similarly, the lan-
guage encoder processes the invariant and spurious features
separately through the respective prompt vectors Px,u and
Px,s. Let the text encoder output embeddings for the in-
variant and spurious prompts as Tx,u and Tx,s, respectively,
and the visual encoder outputs Vx,u and Vx,s. The disentan-
glement occurs when these separate prompts influence the
final embeddings produced by the vision and language en-
coders. The use of separate prompts for invariant and spuri-
ous features allows the model to disentangle the vision and
language representations effectively. The vision encoder is
guided to capture only the invariant features using the in-
variant prompts, while the spurious features are isolated us-
ing the spurious prompts. The same process applies to the
language encoder, where the invariant and spurious prompts
guide the encoding process at an early stage, ensuring that
the invariant and spurious features are disentangled before
the final multi-modal encoding.
Objective Function for Invariant & Spurious Features:
Similar to the Late DiMPLe approach in order to ensure
the learned representations align as intended, we introduce
a triple-objective function:
(1) Invariant Alignment Loss (Lu

ce): This loss minimizes the
cross-entropy between the invariant visual features Vx,u and
the invariant textual embeddings Tx,u:

Lu
ce = −

N∑
i=1

yi log pu(yi|Vx,u, Tx,u) (18)
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Base 66.43 97.57 95.10 66.07 92.10 87.20 29.07 74.23 78.33 76.70 76.93 76.34
Novel 62.80 92.93 95.27 69.80 68.70 89.80 27.43 69.73 50.90 70.23 69.63 69.75

HM 64.56 95.19 95.18 67.88 78.70 88.48 28.23 71.91 61.70 73.32 73.1 72.57

Table 7. Base-to-Novel
Class Generalization using
the early disentanglement
method to separate the in-
variant and spurious fea-
tures. The hyper-parameters
were same as our main ex-
periments.

(2) Spurious Unalignment Loss (Lsp
r ): A regularization

term is applied to ensure the spurious features do not con-
tribute to the classification. This is achieved by a uniformity
constraint, ensuring the spurious components Vx,s and Tx,s
do not align effectively with the target label:

Lsp
r =

N∑
i=1

ℓKL(ps(yi|Vx,s, Tx,s)|p0) (19)

(3) Conditional Mutual Information Loss Lcmi v: In Early
DiMPLe, we enforce a conditional independence constraint
between the invariant and spurious features for the vision
modality alone. Specifically, we aim to minimize the condi-
tional mutual information between the invariant and spuri-
ous components, conditioned on the label Y , using a mutual
information regularization term Lcmiv . This is achieved
through:

Lcmi v = I(Vx,i, Vx,s|Y ) (20)

The total objective function for Early DiMPLe is then:

L = Lu
ce + αLsp

r + βLcmi v (21)

where α is a hyperparameter balancing the influence of the
invariant and spurious loss terms.

The key difference in Early DiMPLe is that the image
and text features are disentangled into invariant and spu-
rious components at an early stage in the pipeline. As a
result, the alignment loss is not calculated between the
original image and text embeddings, but rather between
their invariant components. This is why the loss function
uses the invariant features Vx,u and Tx,u for the alignment,
instead of the original image xi and label yi.

Base-to-Novel Class Generalization for early disen-
tanglement. We evaluate the generalizability of the Early
DiMPLe approach in a zero-shot setup, assessing its per-
formance across both base and novel classes to highlight
its capability to handle out-of-distribution (OOD) classes
effectively. In this setting, each dataset is split into base
classes (on which models are trained in a few-shot con-
figuration) and novel classes, allowing us to measure how
well the model can generalize to unseen categories with-
out additional retraining. Table 7 provides a detailed analy-
sis of Early DiMPLe’s performance, focusing on its ability

to separate invariant and spurious features before encod-
ing, thereby enhancing generalization. From the results,
it is evident that Early DiMPLe achieves high Base accu-
racy across datasets such as Caltech101 (97.57%) and Ox-
fordPets (95.10%), demonstrating strong alignment with the
base distribution. Similarly, the method shows competitive
Novel accuracy, particularly on OxfordPets (95.27%) and
Food101 (89.80%), highlighting its capacity to generalize
effectively to unseen categories. The HM scores provide
a more balanced perspective, with an average of 72.57%
across datasets. Notable strengths are observed on datasets
like Caltech101 (95.19%) and Flowers102 (78.70%), where
the model maintains a favorable trade-off. However, chal-
lenges remain for datasets such as Aircraft and DTD, where
lower HM values indicate difficulties in handling more
complex or domain-specific novel distributions. This un-
derscores potential areas for further refinement, such as in-
corporating more specialized backbones or advanced loss
functions tailored to these datasets.
Computational complexity for Early vs late disentan-
glement: The early and late disentanglement in the DiM-
PLe framework reflects key differences in computational
complexity. DiMPLe-E, with its early disentanglement ap-
proach, has a higher number of parameters and GFLOPs
compared to DiMPLe, as mentioned in Table 8. Despite
having a lesser number of trainable parameters and requir-
ing comparatively lesser computations, DiMPLe’s perfor-
mance is better across all three evaluation settings: (1)
Base-to-Novel Generalization, (2) Cross-dataset evaluation
and (3) Domain Generalization.

Method # Parameters Parameters % CLIP GFLOPs

DiMPLe 4.08M 3.28 1833.4
DiMPLe-E 6.72M 5.39 1903.8

Table 8. Computational complexity for late disentanglement
(DiMPLe) vs early disentanglement (DiMPLe-E). We can see that
DiMPLe is a better choice in terms of fewer GFLOPs and fewer
tunable parameters compared to DiMPLe-E.


