
Appendix
The appendix is organized as follows:
• In Sec. A1, we provide additional implementation details

of our method.
• In Sec. A2, we provide additional details of our monotone

scaling group and its parameterization.
• In Sec. A3, we provide the detailed proofs for our lemmas

in Sec. A4, we discuss the runtime of the DEC module.
• In Sec. A5, we provide additional analysis and results.

A1. Implementation details

DEC module. For all experiments, we model the DEC
module as 2 layered CNN mapping with 64 and 128 channels.
We perform adaptive pooling at the end to get the desired
number of monotone scaling parameters.
Vanilla Canonicalization. To train vanilla canonicaliza-
tion, we discretized the monotone scale parameter into 64
different configurations for the locally scaled MNIST and
object segmentation and 25 different configurations for lo-
cally scaled ImageNet. The learnable energy functions are
implemented via a 3 layer CNN.
Locally Scaled Object Segmentation. The pretrained mod-
els ViT [18], Swin [38], and DINOv2 [45] are finetuned on
the training set for 120 epochs. We set the initial learning
rate at 1e→4 and scaled it by a factor of 0.7 for each 30
epoch. We use DPT [50] style segmentation head. We use
the per-pixel cross-entropy loss to train each model. We set
the weight for the “background” pixel class to 0.1, and the
weights of all other object classes are set to 1. All baselines
are finetuned for 60 epochs with an initial learning rate of
2e→5

Locally Scaled MNIST. Each architecture is trained for
50 epochs. We set the initial learning rate at 1e→4 for
ResNet [25], ViT [18], DeiT [61], and BEiT [7]; 2e→5 for
DINOv2 [45]; and 8e→4 for Swin [38]. All baselines are
fine-tuned for 40 epochs.
Locally Scaled ImageNet. All baselines are fine-tuned fol-
lowing standard data augmentation practice for ImageNet
finetuning [26, 38]. We use a batch size of 80 and an ini-
tial learning rate of 1e→7 with 5 warm-up epochs. We list
common training hyperparameters in Tab. A1.

A2. Monotone scaling group
A2.1. Group axioms
Our monotone scaling set L must meet the following axioms
to be considered as a group. Here, “·” represents the group
product described in Eq. (9). The 4 axioms are as follows:
• Closure: ↑a, b ↓ L, a · b ↓ L

• Associativity: ↑a, b, c ↓ L, a · (b · c) = (a · b) · c

• Existence of Identity: ↔e ↓ L : ↑a ↓ L, e · a = a

Hyperparameter Value
Scheduler Cosine
Weight decay 0.05
Warmup epochs 5
Mixup Alpha 0.8
Label smoothing 0.1
Random Erase Prob 0.25
Layer Decay Factor 0.75
Epochs 20

Table A1. ImageNet Finetuning Parameters

• Existence of Inverse: ↑a ↓ L, ↔a
→1

↓ L : a · a
→1 = e.

A2.2. 2D Monotone scaling group

Construction of monotone scaling group in 2D. To form
the monotone scaling group on 2D, the set

L2D : {l : [0, 1]2 ↗ [0, 1]2}

should satisfy the two following properties:
• For all x ↓ [0, 1]2 there is a neighborhood W ↘ [0, 1]2

such that any function l ↓ L2D can be approximated by a
linear function with Jacobian Jl(x) ↓ SPD(2), i.e., 2 ≃

2 symmetric positive definite Jacobian. This condition
imposes local monotonicity on l.

• For all l1, l2 ↓ L2D, their local Jacobian Jl1(x1) and
Jl2(x2) commutes for x1, x2 ↓ [0, 1]2.

Formally, we state this in Lemma 2.
Lemma 2. The set of all locally monotone increasing

functions L2D with commutative Jacobian is a valid group

under the binary operation of function composition.

Proof. We provide the detailed proof in Sec. A3.2.

Parametrization of l. We parameterize l through a set of
independent monotone functions along the x and y axes
via bilinear interpolation. Specifically, we decompose the
function l into two functions as

l(x, y) = (lX(x, y), lY (x, y)), (A26)

where lX , lY : [0, 1]2 ↗ [0, 1]. We parameterize each of
them as piecewise linear functions. To achieve this we dis-
cretize the domain [0, 1]2 into uniform grid G = X ≃ Y

where X = {x0 = 0, x1, . . . , xN = 1} and Y = {y0 =
0, y1, . . . , yM = 1}. We assume the set is ordered, i.e.,
xi < xj when i < j.

We define independent monotone functions along each
row yj and each column xi of the grid G as follows:

For x ↓ [xn→1, xn), the monotone function along row yj

is given by:

l
yj (x) = ω

yj
xn→1

+
ω
yj
xn → ω

yj
xn→1

xn → xn→1
≃ (x → xn→1). (A27)

Similarly, for y ↓ [ym→1, ym), the monotone function
along column xi is given by:

l
xi(y) = ω

xi
ym→1

+
ω
xi
ym

→ ω
xi
ym→1

ym → ym→1
≃ (y → ym→1) (A28)

Here, ωs are the learnable parameters and to preserve
monotonicity we impose restriction ω

yj
xn→1 ⇐ ω

yj
xn ↑j, n and

ω
xi
ym→1

⇐ ω
xi
ym

↑i,m.
Finally, we obtain lX(x, y) from l

yis via linear interpola-
tion as

lX(x, y) = l
yj→1(x) +

l
yj (x) → l

yj→1(x)

y → yj→1
(A29)

when y ↓ [yj→1 ⇐ yj). We defined lY (x, y) similarly.
We approximate the inverse function l

→1 by computing the
inverses of each l

xi and l
yj individually.

A3. Complete Proofs of Lemmas and Claims
A3.1. Proof of Lemma 1

Lemma 1. The set of all continuous strictly monotonic in-

creasing functions L is a group under the binary operation

of function composition.

Proof. To prove that the set of all continuous strictly mono-
tonic increasing functions L forms a group under function
composition, we need to verify four properties: closure, as-
sociativity, identity element, and inverse element.
Closure. Let l1, l2 ↓ L. Since l1 and l2 are continuous and
strictly increasing, for any x1, x2 ↓ [0, 1] if x1 < x2, then
l1(x1) < l1(x2). Thus, l2(L1(x1)) < l2(l1(x2)), show-
ing that l1 ⇒ l2 is strictly increasing. Moreover, l1 ⇒ l2 is
continuous because both are continuous.
Associativity. Function composition is inherently associa-
tive, thus satisfying the property.
Identity Element. The identity function is continuous and
strictly increasing, so also an element of L
Inverse Element. Strictly monotone functions have an in-
verse, and the inverse is also monotonic. Thus, the inverse is
also an element of L.

Therefore, we conclude that L is a group.

A3.2. Proof of Lemma 2
Lemma 2. The set of all locally monotone increasing

functions L2D with commutative Jacobian is a valid group

under the binary operation of function composition.

Proof. To verify that L2D forms a group, we check the fol-
lowing properties:
Closure: For any l1, l2 ↓ L2D, their composition l1 ⇒ l2 is
also a locally monotone-invertible function.

Because the local Jacobian of the composition l1 ⇒ l2 is

Jl1↑l2(x) = Jl1(l2(x)) · Jl2(x) ↑x ↓ [0, 1]2. (A30)

Since Jl1 , Jl2 ↓ SPD(2) and commutes, their product Jl1 ·

Jl2 is also a SPD matrix. The composition of invertible
functions is also invertible. And the Jl1↑l2 commutes due to
associativity of matrix product. Thus l1 ⇒ l2 ↓ L2D.
Associativity: Function composition is inherently associa-
tive, i.e., for all l1, l2, l3 ↓ L2D, we have

(l1 ⇒ l2) ⇒ l3 = l1 ⇒ (l2 ⇒ l3). (A31)

Existence of Identity: The identity function l has 2 ≃ 2
identity matrix as local Jacobin. Thus, it maintains all the
conditions of L2D.
Existence of Inverse: The inverse function of any l ↓ L2D
can be obtained by inverting the local Jacobians. Specifically,
for any l ↓ L2D, the inverse l

→1 exists and satisfies:

Jl→1(x) = Jl(l
→1(x))→1

↓ SPD(2) ↑x ↓ [0, 1]2 (A32)

Furthermore, Jl→1Jlk = JlkJl→1 for any lk ↓ L2D as

JlJlk = JlkJl (A33)

⇑ J
→1
l (JlJlk) = J

→1
l (JlkJl), (left multiply by J

→1
l)
(A34)

⇑ Jlk = J
→1
l JlkJl (A35)

⇑ JlkJ
→1
l = J

→1
l Jlk (right multiply by J

→1
l). (A36)

Thus, l→1
↓ L2D.

Therefore, L2D satisfies all group axioms, completing the
proof.

A4. Runtime of the DEC Module
We use Anderson Acceleration to approximate the fixed point
of the DEC. This requires a fixed number of forward passes
through the lightweight DEC module. The computational
complexity of this iterative process is O(jTDEC), where j is
a fixed number of required iterations and TDEC is computa-
tion cost associated with a single forward pass of the DEC
module. The hyperparameter j governs the trade-off be-
tween computational cost and the accuracy of the fixed-point
approximation.

Empirically, for DINO-v2, the DEC module requires 24%
(0.16 sec) of the total required time (0.66 sec) to process a
batch of 128 images of size 224 ≃ 224.

A5. Additional Results
A5.1. Additional Baselines
To evaluate the effectiveness of the DEC module in models
with handcrafted hierarchical feature processing or image
pyramid structures, we adapt our approach to HRViT [22]
and ResFormer [60] and report the results in Tab. A2.

Method HRVit [22] Resformer [60]

Aug 93.22 91.04

Canon 94.93 95.27
InvL 95.91 94.92
Ours 96.67 96.91

Table A2. Hierarchical baselines on scale-MNIST

layers in DEC Mod.
1 2 3 4

#
D

EC
M

od 1 93.59 94.47 94.04 93.22
2 94.98 96.04 95.16 95.25
3 96.66 96.17 96.67 96.38
4 96.58 96.78 96.65 96.50

Table A3. Ablation on the number of DEC modules and layers per
module on scale-MNIST

Multiples (→) of grid
1.0 1.5 2.0 2.5

la
ye

rs 2 96.61 96.95 97.06 97.94
3 96.62 96.91 97.08 97.08

Table A4. Acc. at multiple of initial grid size of 4 with varying
number of layers in DEC on scale-MNIST.

A5.2. Additional Ablation Study
We perform additional ablation studies on the scale-MNIST
dataset to evaluate the effect of (i) the number of DEC mod-
ules and (ii) the number of layers within each DEC module.
The results are summarized in Tab. A3. We observe that
increasing the number of DEC modules, i.e., repeatedly
canonicalizing features throughout the network, improves
performance compared to applying canonicalization only at
the input level.

We provide an additional ablation study on the choice of
grid size for local scaling and report the results in Tab. A4.
We observe that increasing the grid size improves the perfor-
mance as it allows more flexible spatial parameterization of
the local scaling operations.

To assess potential side effects of scale equivariance, we
report the accuracies of the adapted models on images of
scale 1, i.e., unmodified images in Tab. A5. We do not
observe any drop in the performance.

A5.3. Additional Visualizations
Following the settings of Fig. 8, we report the results for
more input images in Fig. A1. We observe that Ours is con-
sistently better and more robust on all scales in comparison
to Base; especially on the more extreme local scale factors.

We present visualizations of learned monotone scaling
by the DEC trained on MNIST in Fig. A2. We observe

Methods ViT DeiT Swin BEiT

Base 81.29 70.67 79.55 85.79
Aug 81.29 70.70 79.56 85.66

Canon 79.23 66.92 76.04 84.29
InvL 81.29 70.71 79.58 85.66
Ours 81.43 70.92 79.86 86.04

Table A5. Acc. on unmodified (scale-1) ImageNet images.

that the DEC module has learned to stretch/squeeze regions
of the digits. However, the exact reasoning on why such
scaling is beneficial to the deep-net remains challenging. The
interpretability of the choice of learned canonical elements
in a group is largely underexplored in the literature.

50

60

70

80

90

100

P
ro

ba
bi

lit
y

of
th

e
co

rr
ec

t
cl

as
s(

%
) base

Ours

50

60

70

80

90

100

P
ro

ba
bi

lit
y

of
th

e
co

rr
ec

t
cl

as
s(

%
)

base

Ours

40

50

60

70

80

90

100

P
ro

ba
bi

lit
y

of
th

e
co

rr
ec

t
cl

as
s(

%
)

base

Ours 20

40

60

80

100

P
ro

ba
bi

lit
y

of
th

e
co

rr
ec

t
cl

as
s(

%
)

base

Ours

Figure A1. Comparison on per-scale probability of correctness. We locally scale the same input image within the range of [0.7, 1.3] and
report the probability of the correct class.

Original Images

Monotone Scaled Images

Figure A2. Learned monotone scaling on locally scaled MNIST. We observe that stretching/squeezing is performed on the area with digits.

	Introduction
	Related Works
	Preliminaries
	Latent Deep Equilibrium Canonicalizer
	Local Scaling
	Deep Equilibrium Canonicalization (DEC)
	Latent Canonicalization

	Experiments
	Semantic Segmentation
	Image Classification — MNIST
	Image Classification — ImageNet

	Conclusion
	Implementation details
	Monotone scaling group
	Group axioms
	2D Monotone scaling group

	Complete Proofs of Lemmas and Claims
	Proof of Lemma 1
	Proof of Lemma 2

	Runtime of the DEC Module
	Additional Results
	Additional Baselines
	Additional Ablation Study
	Additional Visualizations

