A. Appendix
A.1. Probing Across Layers

As shown in Figure 4 for the ImageNet classification task,
different layers of the model contribute differently to the
task; a behavior also observed in iGPT [9]. To study this
behavior across multiple tasks, we train probing layers for
action recognition, object tracking, and robot manipula-
tion. Figure 9 shows the probing performance across layers,
model sizes, and tasks. It reveals that action recognition fol-
lows a similar trend to ImageNet classification—peaking in
the middle of the model stacks. While object tracking shows
a comparable trend, object manipulation interestingly ex-
hibits strong performance in the last layers, similar to the
middle layers. Compared to the first three tasks, robot ma-
nipulation benefits from the generative nature of the task.
In encoder models [7] or encoder-decoder models [3, 25],
the last layer of the encoder typically has richer semantic
features. This may suggest that in a decoder-only model
the first half of the network starts to behave like an en-
coder—compressing information—while the remaining lay-
ers project the compressed semantic features back to the
input space.

A.2. Limitations

Our study suggests several important limitations and op-
portunities for future work. A significant limitation stems
from the use of internet videos, which, unlike carefully cu-
rated datasets, introduces challenges related to data qual-
ity and diversity. This variance in data quality can impact
model performance, especially when compared to models
trained on more curated datasets. Another limitation is the
use of tokenizer, this makes the learning not end-to-end,
and the representation and generation quality is bounded by
the quality of the tokenizer, and with quantized vectors, the
quality is very much limited, this needs further explorations
to build a universal visual tokenizer. Another fundamen-
tal limitation is training on videos for next token prediction
task. The added redundancy in video frames, can hurt qual-
ity of the learned representations. See Appendix A.3 for
more discussion on this topic. Additionally, our exploration
of various design choices are based on ImageNet classifica-
tion. While it does transfer to most of the tasks we consid-
ered in this paper, it may not be the optimal configuration
for many other tasks. Furthermore, we have not yet fully
assessed our method’s effectiveness in dealing with dense
prediction tasks, fine-grained recognition, or comprehend-
ing complex temporal dynamics over extended time frames.
These areas represent key opportunities for further research,
aiming to broaden the fruitfulness of autoregressive pre-
trained models.

A.3. Video Tokens for Pre-Training

The next patch prediction for visual pre-training is equiva-
lent to the next token prediction in large language models.
However, most languages have a clear sequential nature,
therefore there is a clear definition for the next word. This
also makes the next word prediction task relatively harder,
since the model requires learning to extrapolate the data.
On the other hand, images and videos, especially over the
spatial dimensions lack a sequential nature. We follow the
previous works [9, 57] to make the images and videos into a
1D sequence by scanning the patches in raster order. While
this ordering allows for example to learn to predict the bot-
tom half of the image from the top part of the image, in
many places, the tokens can be predicted by interpolating
rather than extrapolating.

On the time axis, yes, there is a clear sequential nature,
however, video frames compared to text tokens are more re-
dundant, making the next frame prediction task much eas-
ier. Figure 10 shows average validation loss over 4096 to-
ken, in kinetics 400 dataset [29], on Toto-large model. This
shows there is high loss of the first frame, but the subse-
quent frames have relatively lower loss compared to the
first frame. This is because, even with reasonably lower
sampling rate, frames following the first frame has some re-
dundancy, and hinders the learning, since these tokens are
relatively easy to predict. This also could be attributed by
emergence of induction heads [35]. While we focused on
learning from unfiltered internet scale video with minimal
inductive bias, to learn efficiently from videos, need further
research in this direction.

A.4. SD-VAE discrete tokenizer:

We also explored quantizing continuous tokens from SD-
VAE tokenizer [16]. The simplest option is to create very
large number of randomly initialized discrete code books
and train the model to predict these discrete code books.
This only works when the code book dimension is very
small, and in our case SD-VAE returns 4 dimension vector.
From the SD-VAE we will get a 4 dimensional vector for
each patch and we simply find a nearest neighbor from the
randomly initialized code book as the discrete token. This
allow us to change the vocabulary size without any training.

Method Tokens Vocabulary Topl
Toto-large-dVAE ~ 32x32 8k 64.4
Toto-large-SDVAE 32x32 32k 73.8
Toto-1b-SDVAE ~ 32x32 32k 78.8

Table 13. Random Vocabulary: We trained our models on ran-
domly initizalied code books on top of SD-VAE latents. This pre-
serves the image fidelity much higher than dVAE or VQGAN.



Figure 7. Semi-Supervised Tracking: We follow the protocol in STC [27] by starting with the GT segmentation mask and propagating
the labels using features computed by Toto-large. The mask was propagated up to 60 frames without significant loss of information.

Figure 8. Real-world Deployment: An example episode of our policy performing a cube-picking task on a Franka robot in the real world.
Using Toto-base enables real-time control, achieving about 63% success rate.
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Figure 9. Probing Across Layers, Models, and Tasks: We study the behavior of our models across multiple layers and tasks. For image
classification, action recognition, and object tracking, all the models behave similarly and peak around 50% of the model depth. This
behavior is observed across all model sizes. Robot tasks show a similar behaviour, where the middle layers perform good at picking the
objects, but last layers also perform good as middle layers. These plots suggests, in decoder-only model, first half of the model starts to
behave like an encoder, and compress the information, and then rest of the model, projects the compressed semantic features back to input
space.

Method (Res/Patch) J&F J F

82.6% vs causal attn: 82.2%. Even though our models are
DINO-base (224/16) 33.1 36.2 30.1 ; ) s . o
Toto-base-dVAE (256/16) 204 191 216 not pre-trained with prefix attention, still able to utilize full
Toto-base-SDVAE-400ep (256/16)  29.9 (+9.5) 334 (+14.3) 264 (+4.8) attn at fine-tuning. This is an unrealized benefit of training

with videos, (a middle token in say, 8th frame won’t see
the rest half of the 8th frame, but have seen all the tokens
from 7th frame, which are similar because of video, hence
approximating full attention at pre-training)

A.6. Full fine-tuning

We fine-tuned our models on ImageNet, and performance is
close to SOTA, compared to linear probing (where we only
During fine-tuning, we experimented with causal and full use causal attention). But during the fine-tuning, we use full
attention. On ImageNet, our base model achieved full attn: attention.

Table 14. DAVIS with SD-VAE tokenizer: We also test SD-VAE
tokenizer trained models on tracking, and it performs much better
than dVAE trained 7Toto models.

A.5. Prefix attention



Model Params Dimension Heads Layers

al 14.8M 256 16 12
a2 77.2M 512 16 16
a3 215M 768 16 20
a4 458M 1024 16 24
a5 1.2B 1536 16 28
a6 1.9B 1792 16 32

Table 17. Toto Varients: We scale Toto models by increasing hid-
den dimension and number of layers linearly while keeping num-
ber of heads constant following [55, 65].
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Figure 11. p-Parameterization Learning Rate: We show that pi-
Parameterization [65], we can train all width Toto models, with an
single optimal learning rate of 277,
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Table 15. Full Fine Tuning Performance: Comparison of differ-
ent methods performance on ImageNet-1K.

A.7.iGPT vs Toro on ImageNet

Table 7 shows ImageNet evaluation performance. However,
iGPT [9] models are evaluated only using linear probing. To
have a fair comparison, between iGPT and Toto, we reeval-
uated our models using linear probing. Both models have
causal attention and are trained on auto-regressive objec-
tives. On the same model sizes, about 1 billion param-
eters, our achieve 66.2% while the similar iGPT model’s
ImageNet performance is 65.2%. This fair evaluation sug-
gests the modifications made on 7ofo have clear benefits
over iGPT.

Method Arch #6 Topl
iGPT-L [9] GPT-2 1386 65.2

Toto-1b LLaMA 1100 66.2

Table 16. ImageNet Linear Probing Results: Toto performs bet-
ter than similar size iGPT models.

A.8. u-Parameterization

To study the scaling behaviours of Tofo using u-
Parameterization [65]. First we train various models al-a6
(in Table 17), with hidden sizes (64-1536) and number of
layers (12-48), increasing linearly and we used VQGAN to-
kenizer [15]. Then we tune the learning rate for these mod-
els, with fixed depth using p-Parameterization [65]. Fig-
ure 11 shows optimal learning rate of 277 for all the model
widths. Once we find the optimal learning rate, we train
al-a6 models on the mixture of image and video data, as
mentioned in Table 2.

A.9. n-gram distribution

In this section, we compare the 2-gram and 3-gram distri-
bution of dVAE [45], VQGAN [15] image tokeizers. We
compute 2-gram and 3-gram distributions on the discrete to-
kens of 10000 ImageNet validation images. Figure 12 and
Figure 13 show the distributions of these tokenizers respec-
tively. On 2-gram distribution, dVAE [45] has more discrete
combination of tokens compared to both VQGAN-1K and
VQGAN-16k tokenizers.

A.10. Attention probing variants on K400

We also evaluate our models and baselines on the Kinet-
ics 400 dataset using a variant of attention probing. In the
main paper, we use attention probing, with only learning

Wi, W, matrices, and a single learnable query vector. We
also test with cross attention with MLP layers as the atten-

tion classifier, to give more capacity to the learnable head.
Table 18 show the performance on the attention classifier
with an additional MLP head. This helps to improve perfor-
mance across over all models.

Method Arch Topl
Hiera [49] Hiera-L/14 74.2
Hiera [49] Hiera-H/14 75.2
VideoMAE [59] ViT-B/14 65.4
VideoMAE [59] ViT-L/14 74.8
Toto-base LLaMA 61.2
Toto-large LLaMA 65.8
Toto-1b LLaMA 74.8

Table 18. K400 Results: We evaluate our models using cross
attention and MLP layer as the classification head. Overall using
a high-capacity head improves the performance across all models.
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Figure 10. Average Validation Loss Over Tokens: We show the average loss per token for kinetics validation set. It clearly shows the
redundancy in videos, as the first frame has higher prediction loss, and rest of the frames on average has lower loss than the first frame.
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Figure 12. 2-gram Distribution of Various Tokens: We compute the 2-gram distribution on 10000 images from the ImageNet validation
set. Compared to VQGAN 1k and 16k vocabulary tokenizers, the dVAE tokenizer has a larger set of token combinations.
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Figure 13. 3-gram Distribution of Various Tokens: We compute the 3-gram distribution on 10000 images from the ImageNet validation
set. All the tokenizers has similar almost flat distribution when it comes to 3-gram tokens.

A.11. Additional Layer-wise Probing Results A.12. Generation samples

We probe the multiple variants of our models at each layer long video generation: we can generate up to 64 frames,
for the best ImageNet performance. First, we test the mod- first raw: periodic motion, second raw: object permanence
els on linear probing, on both sizes of 128 and 256 resolu- (light stand).

tion. Figure 14 presents the probing curves of the models
trained with attention probing at 128 resolution. Across all
models, the performance has a similar behavior to the pre-
trained models, with peak performance around the middle
of the depth of the model.

prompt



Comparison of Generation Quality on UCF101 Addi-
tionally, we compare our model’s generation quality (FVD)
on UCFI101. Even though Tofo is not trained on curated
videos, it is competitive with state-of-the-art methods.

Method FVD

Toto 290
Video-LDM 550
ModelScope 410
PYoCo 355
PixelDance 243
ViD-GPT 278

Table 19. FVD scores on UCF101. Lower is better.
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Figure 14. Training Loss Curves: We show the training loss
curves for multiple variants of our models.
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A.13. Joint training of Images and Videos

During Toto training, we use special tokens to separate
video and image data. Fig 15 shows generation for
video/image start tokens.
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Figure 15. With [1] start token, we see the model generates video,
with [3] it generates sequence of images. Please zoom for quality.
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