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Supplementary Material

A. Appendix
A.1. Detailed Dataset Description

A.1.1. Crowd-sourced Emotional Multimodal Actors
Dataset (CREMA-D) [4]

CREMA-D is a multimodal dataset designed for emotion
recognition research. It contains audio-visual recordings
of actors portraying a variety of emotional states, includ-
ing Anger, Disgust, Fear, Happy, Neutral, and Sad. The
dataset features actors from diverse racial and ethnic back-
grounds, covering a wide age range, which makes it suitable
for studying the interplay between audio and visual emo-
tional expressions. Ratings for emotional intensity and ac-
curacy were gathered from crowd-sourced participants. The
dataset is divided into a training set of 6,027 samples, a val-
idation set of 669 samples, and a test set of 745 samples,
facilitating robust model training and evaluation.

A.1.2. Audio Visual MNIST (AV-MNIST) [37]

AV-MNIST is a synthetic multimodal dataset designed for
audio-visual digit classification. It combines visual MNIST
digit images, downsampled using PCA to retain 25% of
their original energy, with audio samples of spoken digits
from the TIDigits dataset [22]. The audio samples are repre-
sented as 112 x 112 spectrograms and are augmented with
noise from the ESC-50 dataset [28]. The dataset consists
of 70,000 audio-visual pairs, including 55,000 for training,
10,000 for testing, and 5,000 selected from the training set
for validation.

A.1.3. VGGSound [6]

VGGSound is a large-scale audio-visual dataset designed
for training and evaluating audio recognition models. It
consists of over 200,000 video clips sourced from YouTube,
each containing audio-visual correspondence where the
sound source is visually present in the video. The dataset in-
cludes 310 diverse classes covering various real-world envi-
ronments, such as people, animals, music, and nature. Each
clip is 10 seconds long, ensuring both the audio and visual
elements are aligned, making it ideal for audio-visual learn-
ing tasks.

A.1.4. UR-Funny [15]

UR-FUNNY is a multimodal dataset created for the task
of humor detection, utilizing text, visual gestures, and
prosodic acoustic cues. The dataset comprises 1,866 video
clips collected from TED Talks featuring diverse speak-
ers and covering 417 different topics. Each clip is la-
beled with binary humor annotations, with an equal num-
ber of humorous and non-humorous samples, ensuring a

balanced dataset. The multimodal nature of UR-FUNNY
makes it particularly suitable for investigating the relation-
ships among different modalities, offering insights into how
text, vision, and audio can jointly contribute to understand-
ing humor in a multimodal learning context.

A.1.5.IEMOCAP [3]

The Interactive Emotional Dyadic Motion Capture IEMO-
CAP) dataset is a widely used resource for emotion recog-
nition, containing approximately 12 hours of audio-visual
data from ten actors engaged in scripted and improvised
dyadic conversations to elicit a range of authentic emotions.
The dataset is rich in modalities, providing synchronized
video, speech, facial motion capture data, and text transcrip-
tions. Each utterance is annotated by multiple raters for
both categorical emotions and dimensional attributes (va-
lence, arousal, and dominance), making it suitable for di-
verse and nuanced modeling tasks. Due to its naturalis-
tic dyadic interactions, IEMOCAP serves as a benchmark
for developing emotion-aware conversational Al and under-
standing complex multimodal emotional cues.

A.2. Details on Baselines
A.2.1. Modality-Specific Early Stopping (MSES) [11]

MSES is a multimodal learning approach that aims to pre-
vent overfitting by independently managing the learning
rate for each modality. Within the MSES framework, each
modality’s classifier is treated as a separate task, and early
stopping is employed when a modality begins to overfit,
while others continue to learn. By formulating a multi-
task setup, MSES allows for the independent regulation
of modality-specific learning progress, ensuring that the
stronger modalities do not overshadow the weaker ones dur-
ing joint training. This method effectively prevents over-
fitting by identifying and stopping learning for modalities
when their validation loss fails to improve, thereby maxi-
mizing balanced contributions from each modality and en-
hancing the overall multimodal learning process.

A.2.2. Modality-Specific Learning Rate (MSLR) [46]

MSLR aims to optimize multimodal late-fusion models by
assigning unique learning rates to each modality instead of
using a single global learning rate. This approach helps
prevent the vanishing gradients issue that can occur when
learning rates are not tailored to the specific characteris-
tics of each modality. By assigning modality-specific learn-
ing rates, MSLR ensures that each modality contributes ef-
fectively to the learning process, ultimately improving the
overall performance of the multimodal model.



A.2.3. Adaptive Gradient Modulation (AGM) [23]

AGM addresses modality competition in multimodal mod-
els by modulating the participation level of each modality
during training. Inspired by Shapley value-based attribu-
tion and the OGM-GE algorithm, AGM isolates the contri-
bution of individual modalities and modulates their gradi-
ent update intensity accordingly, allowing stronger modal-
ities to be suppressed while amplifying weaker ones. This
adaptive strategy applies to all types of fusion architectures,
thereby boosting the overall model performance by ensur-
ing a balanced contribution from each modality and mitigat-
ing dominance effects that lead to suboptimal joint training
outcomes.

A.2.4. Prototypical Modality Rebalance (PMR) [9]

PMR tackles the “modality imbalance” issue by apply-
ing different learning strategies to each modality to en-
sure more balanced learning. Specifically, PMR uses pro-
totypical cross-entropy (PCE) loss to accelerate the slow-
learning modality, allowing it to align more closely with
prototypical representations, while also reducing the inhi-
bition from dominant modalities via prototypical entropy
regularization (PER). The method effectively exploits fea-
tures of each modality independently and helps prevent one
modality from dominating the learning process, thereby en-
hancing overall multimodal learning performance.

A.2.5. On-the-fly Gradient Modulation with Generaliza-
tion Enhancement (OGM-GE) [26]

OGM-GE addresses the issue of under-optimization for
specific modalities in multimodal learning by dynamically
modulating gradient contributions for each modality. This
approach balances the learning pace by modulating gradi-
ents of modality-specific coefficients during backpropaga-
tion, reducing the dominance of stronger modalities and fa-
cilitating better feature exploitation of weaker ones. Addi-
tionally, OGM-GE incorporates a generalization enhance-
ment mechanism, adding dynamic Gaussian noise to im-
prove model generalization.

A.2.6. Multimodal Learning with Alternating Unimodal
Adaptation (MLA) [51]

MLA addresses the issue of modality dominance by alter-
nating the training focus between modalities rather than us-
ing conventional joint optimization. This alternating uni-
modal adaptation helps avoid interference between modali-
ties, allowing each to reach its full potential while still main-
taining cross-modal interactions through a shared head. A
gradient modification mechanism is introduced to mitigate
“modality forgetting,” thereby preserving cross-modal in-
formation learned during previous iterations. At inference,
MLA integrates multimodal information dynamically, us-
ing uncertainty-based fusion to manage imbalance across
modality-specific contributions effectively.

A.2.7. MMPareto: Boosting Multimodal Learning with
Innocent Unimodal Assistance [40]

MMPareto aims to enhance multimodal learning by ad-
dressing the gradient conflict that arises between unimodal
and multimodal learning objectives. The algorithm uses
Pareto integration to align gradient directions across objec-
tives, ensuring a final gradient that benefits all modalities
without compromising any. By balancing gradient direc-
tion and boosting gradient magnitude, MMPareto improves
generalization, providing “innocent unimodal assistance” to
enhance the performance of each modality while maintain-
ing the consistency of multimodal learning.

A.2.8. On Uni-Modal Feature Learning in Supervised
Multi-Modal Learning (UMT) [8]

This paper addresses the problem of insufficient learning
of unimodal features in multi-modal learning. The pro-
posed framework consists of two approaches: Uni-Modal
Teacher (UMT) and Uni-Modal Ensemble (UME). UMT
distills unimodal pre-trained features into a multi-modal
model during late-fusion training, ensuring that the repre-
sentations learned for each modality are preserved effec-
tively while maintaining cross-modal interactions. UME,
on the other hand, avoids cross-modal interactions by com-
bining the predictions from unimodal models directly, thus
preventing negative interference. To decide which approach
to use, they employ an empirical trick explained in the pa-
per. In our experiments, we compare against UMT due to its
use of knowledge distillation (KD), which aligns with our
proposed approach.

A.2.9.ReconBoost: Boosting Can Achieve Modality Rec-
oncilement [18]

ReconBoost introduces a modality-alternating learning
paradigm to mitigate modality competition in multimodal
learning. Instead of optimizing all modalities simultane-
ously, ReconBoost updates each modality separately, en-
suring that weaker modalities are not overshadowed by
stronger ones. A KL-divergence-based reconcilement reg-
ularization is incorporated to maximize diversity between
current and past updates, aligning the method with gradient-
boosting principles. Unlike traditional boosting, Recon-
Boost only retains the most recent learner per modality, pre-
venting overfitting and excessive reliance on strong modal-
ities. Additionally, it integrates a memory consolidation
regularization to preserve historical modality-specific infor-
mation and a global rectification scheme to refine joint op-
timization. Empirical results across multiple benchmarks
demonstrate that ReconBoost effectively reconciles modal-
ity learning dynamics, leading to improved multimodal fu-
sion performance.



A.2.10. Facilitating Multimodal Classification via Dy-
namically Learning Modality Gap (DLMG)
[45]

DLMG addresses the modality imbalance problem in mul-
timodal learning by focusing on disparities in category la-
bel fitting across different modalities. Unlike prior methods
that primarily regulate learning rates or gradient contribu-
tions, DLMG leverages contrastive learning to align modal-
ity representations and reduce dominance effects. The ap-
proach dynamically integrates supervised classification loss
and contrastive modality matching loss through either a
heuristic strategy or a learning-based optimization strategy
that adjusts their relative importance during training. By
progressively refining modality alignment while maintain-
ing label supervision, DLMG minimizes performance gaps
between dominant and non-dominant modalities, leading to
a more balanced and effective multimodal learning process.

A.2.11. Detached and Interactive Multimodal Learning
(DI-MML) [10]

DI-MML proposes that modality competition is a direct re-
sult of the uniform learning objective used in traditional
joint training frameworks. To eliminate this competition,
DI-MML proposes a detached learning framework where
each modality’s encoder is trained separately with its own
isolated learning objective. To enable cross-modal inter-
action without reintroducing competition, the framework
employs two key strategies: (1) a shared classifier is used
to align features from different modalities into a common
embedding space, and (2) a novel Dimension-decoupled
Unidirectional Contrastive (DUC) loss is introduced. The
DUC loss identifies “effective” and “ineffective” feature di-
mensions within each modality and then transfers knowl-
edge unidirectionally from the effective dimensions of one
modality to the corresponding ineffective dimensions of an-
other. This strategy facilitates the exchange of comple-
mentary information while preserving the integrity of each
modality’s well-learned features.

A.3. Details on Fusion Techniques

A.3.1. Summation

Summation fusion is a straightforward multimodal integra-
tion technique where features from multiple modalities are
combined through element-wise addition. Each modality
contributes independently, and their respective represen-
tations are directly summed without any complex cross-
modal interactions. In this approach, the output of each
modality-specific encoder is first processed by a fully con-
nected layer to generate unimodal predictions, which are
then added together to form a unified representation. This
combined output is used to compute a loss, which subse-
quently updates all components involved, including the en-
coders and the fully connected layers. Summation fusion’s

strength lies in its simplicity and ease of implementation, as
it does not require intricate fusion mechanisms. However,
it does not explicitly capture inter-modal relationships, po-
tentially limiting its effectiveness in scenarios where richer
cross-modal interactions are beneficial.

A.3.2. Concatenation

Concatenation fusion is a common strategy for integrat-
ing information from different modalities by concatenat-
ing their feature vectors along a specified axis. This
method combines feature representations directly, allowing
the model to consider information from all modalities to-
gether as a single, extended vector. Despite enabling joint
perception of multimodal data, it does not explicitly model
cross-modal interactions. The concatenated features are
passed through a fully connected layer, where the input size
equals the sum of all encoder output dimensions, and the
output size matches the number of classes. During train-
ing, the model uses the resulting fusion output to compute
the loss and update all the involved parameters, including
those of the individual encoders and the fully connected
layer. Concatenation fusion is effective in creating a unified
feature representation, but it relies on subsequent layers to
extract and learn any interactions between the modalities.

A.3.3. Feature-wise Linear Modulation (FiLM) [27]

FiLM is a sophisticated fusion method that integrates infor-
mation from multiple modalities by adjusting feature rep-
resentations in one modality according to the information
from another. This modulation approach uses conditional
inputs to produce parameters that scale and shift feature
activations, enabling the model to dynamically adjust its
processing based on context. FiLM works by passing the
conditioning modality through a layer that outputs these
modulation parameters, which then directly adjust the target
modality’s features before they proceed to the next layers in
the model. By providing targeted feature modulation, FiLM
helps capture cross-modal nuances and allows the model to
be more adaptive in multimodal learning tasks that require
context-sensitive adjustments.

A.3.4. BiLinear Gated Fusion (BiGated) [21]

BiGated fusion combines bilinear pooling and gating mech-
anisms to enhance the integration of multiple modalities by
capturing their complex interactions. This technique explic-
itly models cross-modal relationships, providing a more ex-
pressive and fine-grained fusion strategy compared to sim-
pler approaches like concatenation or summation. In Bi-
Gated fusion, each modality passes through its own fully
connected layer, much like summation. However, what sets
BiGated apart is its use of a gating mechanism—one modal-
ity’s hidden state is processed through an activation function
(we use sigmoid) to generate a gated weight, which is then
used to modulate the contributions of other modalities. This



approach ensures that each modality can dynamically influ-
ence how other modalities are represented in the fusion pro-
cess, allowing for a richer and more adaptive multimodal
representation before proceeding to the final classification
layers.

A.3.5. Cross-Attention Fusion [5]

Cross-attention fusion enables the dynamic and adaptive in-
tegration of multiple modalities by allowing each modality
to attend to others through bidirectional or all-directional at-
tention mechanisms. This approach explicitly models inter-
modal dependencies, ensuring that each modality can selec-
tively focus on the most relevant features from others. In our
implementation, for two-modal cases, modality X attends
to modality Y and vice versa, refining their representations
based on mutual interactions. For three-modal scenarios,
all-directional attention is applied, where each modality in-
teracts not only with one other but also with the third, en-
suring comprehensive multimodal integration. The attended
representations are normalized to enhance stability and mit-
igate potential imbalances in feature contributions. Finally,
the refined features from all modalities are projected into a
unified representation through a fully connected layer. This
mechanism effectively captures nuanced cross-modal rela-
tionships, allowing the model to leverage complementary
modality-specific information for robust multimodal learn-
ing.

A.3.6. Late Fusion [13]

Late fusion technique involves independently processing
each modality through its respective model or encoder, fol-
lowed by combining the outputs at a later stage to produce
the final prediction. This approach allows each modality
to be modeled and optimized in isolation, maintaining the
unique properties of each data source. However, it may miss
opportunities to exploit early cross-modal interactions that
could provide additional benefits during feature learning. In
late fusion, each modality-specific encoder is followed by
its own fully connected layer, which is trained solely on that
modality’s data. The fusion output is computed by averag-
ing the outputs of all unimodal models, ensuring that the
fusion occurs only after independent learning is complete.
This independence provides flexibility and robustness, es-
pecially in scenarios where some modalities may be miss-
ing, but limits the ability to deeply integrate multimodal re-
lationships early in the learning process.

A.4. Details on Experimental Setups
A.4.1. Model Architectures

ResNet-18 ResNet-18, a convolutional neural network
with 18 layers, belongs to the ResNet family and is
renowned for addressing the vanishing gradient problem
through residual connections. These residual connections

allow information to bypass some layers, which helps sta-
bilize training even in deeper networks. In our experi-
ments, we use ResNet-18 as an encoder for both audio and
video modalities across CREMA-D, AV-MNIST, and VG-
GSound datasets. We used a specific weight initialization
strategy: Xavier normal for fully connected layers, Kaiming
normal for convolutional layers, and constant initialization
for batch normalization layers, which facilitated an effec-
tive starting point for network training and ensured stable
convergence across multimodal tasks.

Transformer Transformers are powerful architectures
designed for handling sequential data and capturing long-
range dependencies through self-attention mechanisms. In
our implementation, we employ Transformers as encoders
for the audio, video, and text modalities of the UR-Funny
and IEMOCAP dataset. Following the approach described
in [23], we utilized a 4-layer Transformer encoder with
eight attention heads and a hidden dimension of 768 for
each modality in the UR-Funny and IEMOCAP dataset.
Input features were projected to a 768-dimensional em-
bedding using a convolutional layer, ensuring consistency
across different modalities. We employed a similar initial-
ization strategy to ResNet-18 to facilitate stable training.

A.4.2. Hyperparameters

We trained our models on 1 Nvidia A10 GPU with a batch
size of 16 using the SGD optimizer, with a momentum of
0.9 and a weight decay of 1 x 10~*. We initialized the
learning rate at 0.001 and decayed it by a ratio of 0.1 every
200 epochs. For all experiments, we set the random seed to
999 for reproducibility. We defined the G>D loss function as
a weighted sum of student loss, feature loss, and logit loss,
where o and 3 are weighting coefficients for the feature
loss and logit loss, respectively. We set both a and f3 to
1.0 for all datasets. Additionally, for the logit loss, we used
a temperature of 1.0 in the KL Divergence without further
softening, effectively utilizing hard logits for the training
process.

A.5. Comparison of G>D with DI-MML

In response to reviewer feedback, we provide an addi-
tional comparison against the state-of-the-art baseline DI-
MML [10]. As shown in Table 8, G?*D outperforms DI-
MML on both the CREMA-D and AV-MNIST datasets.
This result further validates the effectiveness of G?D in re-
lation to current leading methods in the field.

Table 8. Comparing G*D with DI-MML

Method | Joint-Train DI-MML  G”D

CREMA-D 67.47 83.51 85.89
AV-MNIST 69.77 71.35 73.03




Table 9. Comparing Components of G’°D with UMT & OGM-GE

Table 10. Single-Batch Resource Metrics on CREMAD

Joint- G?D | OGM- G’D

Method Train UMT Loss | GE SMp (SMP + G?D Loss )
CREMA-D | 67.47 | 67.61 78.63| 72.18 80.78 85.89
AV-MNIST | 69.77 | 72.33 72.76| 71.08 72.51 73.03

A.6. Further Analysis of G’D
A.6.1. Distinction of G>D from UMT and OGM-GE

The primary novelty of G?D arises from its unique G>D loss
and its Sequential Modality Prioritization (SMP) technique,
and critically, from their synergistic combination.

Our G?D loss improves upon the distillation strategy of
UMT [8] by incorporating a KL divergence-based logit loss.
This addition is crucial for enabling the student model to
learn the nuanced inter- and intra-class relationships cap-
tured by the unimodal teachers’ soft logits.

Furthermore, our SMP technique is fundamentally dif-
ferent from the gradient modulation in OGM-GE [26] in
two principal ways:

1. Guidance for Modulation: OGM-GE calculates
modality confidence from the student’s own encoders
during training. This signal can be noisy and unreli-
able, especially in early stages. In contrast, SMP lever-
ages stable confidence scores from pre-trained unimodal
teachers, providing a more robust and accurate signal to
identify weaker modalities automatically.

2. Suppression Mechanism: OGM-GE uses functions like
1 — tanh(-) to only partially suppress dominant modal-
ities, meaning they continue to train simultaneously and
modality competition can persist. SMP enforces a com-
plete gradient shutdown for non-prioritized modalities.
This ensures that the prioritized weak modality trains
in true isolation, more effectively mitigating interference
from dominant modalities.

The results in Table 9 validate these distinctions, show-

ing that the G>D loss alone surpasses UMT, SMP alone

surpasses OGM-GE, and their combination yields the best
overall performance.

A.6.2. Synergy of Distillation and Sequential Modality
Prioritization

The motivation for integrating our GD loss (via KD) with
SMP is to address the limitations of using either tech-
nique alone. The distillation component leverages uni-
modal teachers—trained in isolation—to provide the stu-
dent with stable, competition-free feature and logit targets.
This guides the student towards more balanced representa-
tions than learning solely from GT labels amidst modality
competition.

However, even with this guidance, the student’s modal-
ity encoders are still optimized simultaneously, which al-
lows modality imbalance to persist. SMP is introduced to

Method | Total Memory (MB) | Total Execution Time (ms)

Joint-Train 12.1366 MB 4531.8
G’D 12.1998 MB 4539.8

solve this. The crucial synergy lies in the fact that during
the isolated training phases enforced by SMP, the priori-
tized weak modality learns not only from the ground-truth
labels but also from the rich, interference-free knowledge
distilled from its unimodal teacher via the G°D loss. This
focused, dual-signal learning in an isolated context enables
the robust development of weaker modalities. By com-
bining SMP with our distillation objective, G’D mitigates
modality imbalance more thoroughly and effectively than
using either technique independently.

A.6.3. Computational Cost

The training overhead of G?D is negligible, and there is no
additional overhead during inference. This efficiency stems
from the framework’s design: unimodal teacher models are
pre-trained, and their outputs (e.g., logits and features) are
saved. During the multimodal student model’s training,
these pre-computed outputs are loaded from disk per batch
in a process analogous to loading the dataset itself. As quan-
tified in Table 10, for a typical 16-sample batch, G?D re-
quires only ~0.5% more memory and adds merely ~0.15%
to the execution time compared to a standard joint-training
baseline. Therefore, in resource-constrained environments,
if a traditional joint-training model is feasible, G>D is also
readily viable by performing the one-time teacher training
first and then training the student.

A.7. Additional Ablation Studies
A.7.1. Learning with Missing Modalities

To evaluate the robustness of G2D with incomplete data, we
conduct experiments on the [IEMOCAP dataset with ran-
domly missing modalities, generating miss rate masks from
0% to 60% following the setup in MLA [51]. As demon-
strated in Table 11, G?D consistently outperforms several
state-of-the-art methods designed specifically for this task
across all tested rates. This superior performance, even
as data becomes highly sparse, suggests that by mitigating
modality imbalance and fostering well-rounded representa-
tions, our framework learns more resilient features that are

Table 11. G?D vs. Missing Modality Methods on IEMOCAP

Miss Rate|Joint-Train| CRA [34] MMIN [53] CPM-Net [49] TATE [48]| G?D

0% 75.51 76.21 74.94 58.00 69.92  |77.19
20% 69.06 67.34 69.36 53.65 63.22  |71.49
40% 61.09 57.04 63.30 51.01 60.36  65.10
60% 52.41 43.22 57.52 47.38 57.99 |61.50




less dependent on any single data source, making it inher-
ently more robust when modalities are unavailable.

Table 12. Effect of o and 8 in G*D with SMP

(a, B) weights
(0,0)](0.25,0.75)[ (0.5, 0.5)[ (0.75, 0.25) | (1, 0) | (0, D [ (1, 1)
CREMA-D [80.78| 84.41 84.95 84.81 82.39(84.6885.89
UR-Funny [63.58| 64.79 64.29 64.29 |64.59|64.69|65.49

Dataset

A.7.2. Effect of o and /3 in G*D.

« and [ denote the weighting coefficients of feature loss
and logit loss, respectively in the proposed G?D loss. Ta-
ble 12 evaluates the effect of changing the weightage of
feature loss and logit loss on G?D. Assigning full weight
to both losses (a« = 1,3 = 1) yields the best overall per-
formance, highlighting their combined importance in mul-
timodal learning. In contrast, removing both losses (@ =
0,8 = 0) significantly reduces performance, confirming
their necessity. While different weight combinations impact
results, incorporating both losses with higher weight leads
to greater improvements across datasets.
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