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A. Extended Related Works
Existing PTQ techniques for ViTs [6, 10, 12, 14, 16, 17,
21, 22] address long-tailed distributions and static activa-
tion outliers to enhance quantization accuracy. For in-
stance, DopQ-ViT [21] and ADFQ-ViT [6] mitigate out-
liers by optimizing per-channel and per-patch scale fac-
tors, respectively. FQ-ViT [12] introduces Power-of-Two
Factor (PTF) for inter-channel LayerNorm variation and
Log-Int-Softmax (LIS) for 4-bit attention map quantiza-
tion. Among the early PTQ methods for Mamba mod-
els, Mamba-PTQ [15] and Quamba [3] identified activa-
tion outliers as a key challenge but were tailored for lan-
guage tasks. More recently, VMM PTQ techniques [4, 9]
highlighted the highly dynamic activation distributions and
inter-channel variations across time-steps. PTQ4VM [4]
adapts SmoothQuant [20] to migrate activation outliers into
weights using a migration factor. However, as noted in [7],
this increases weight complexity, making both weights and
activations more sensitive to dynamic variations, rendering
it ineffective for ultra-low precision (< 4 bits) quantiza-
tion. Additionally, PTQ4VM does not quantize SSM op-
erators, limiting its scope to linear layer weights and out-
put activations. QMamba [9] addresses the dynamic inter-
time-step variations in VMMs’ hidden states by introduc-
ing fine-grained temporal grouped quantization, quantizing
both weights and activations. Similarly, kSQ-VMM [18]
applies similarity-based k-scaled channel-wise and token-
wise quantization to handle dynamic activation distribu-
tions. However, existing VMM PTQ methods rely on static
scale factors [4, 9] or fixed temporal groupings [9], leading
to accuracy degradation at ultra-low bit precisions due to
their inability to dynamically manage outlier channels.

B. OuroMamba DFQ Algorithm
B.1. OuroMamba-Gen
In Algorithm 1, we detail the OuroMamba-Gen pipeline.

B.2. OuroMamba-Quant
In Algorithm 2, we detail the OuroMamba-Quant
pipeline.

Algorithm 1: OuroMamba-Gen
Input: A pre-trained FP VMM model P with L

layers, Gaussian noise batch XB,
task-specific targets TGB , neighborhood size
N , iterations G.

Output: A set of generated synthetic samples X∗
B.

for g = 1, 2, . . . , G do
Input XB into P ;
for l = 1, 2, . . . , L do

Capture per-time-step original hl(t), ∆l(t) ;
Set wl

t = meanE(∆
l(t)) ;

Compute hl
p(t);

Extract implicit attention;
Compute LC

l =
∑

t LC
l,t;

end
Compute LC =

∑
l LC

l ;
Compute output loss LO;
Compute Lgen = LC + LO;
Update X∗

B via backpropagation of Lgen;
end

C. Additional Quantization Results
In Table 1 we provide additional quantization results
of Vim-T [24], VMamba-T [13] and the hybrid model
MambaVision-T [5] for image classification.

D. Additional Ablations
W8A8 Quantization. In Table 2, we compare PTQ4VM
with OuroMamba, following the experimental setup out-
lined in Sec. 6.1. It is important to note that here, bOa = 16.
Real v/s Synthetic Samples. In Table 4, we compare the
accuracy with real and OuroMamba-Gen synthetic calibra-
tion samples on Vim-S, using 128 images for both. Notably,
the synthetic samples closely match the accuracy achieved
via real images.
Outlier Detection. Table 5 presents the classification ac-
curacy of Vim-B under different outlier detection mecha-
nisms, highlighting their impact on quantized model per-
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Algorithm 2: OuroMamba-Quant

Input : Activation X(t) ∈ RN×E , Static scale
SI(t), Threshold θ, Refresh rate nrefresh,
Outlier list Olist, Inlier and outlier
bit-precision bIa, b

O
a

Output: Quantized activation Xq(t), Updated
outlier list Olist

if t % nrefresh == 0 then
Olist = {ϕ}

end
SD(t) = ComputeScale(X(t)[:, c] ∀ c /∈ Olist)
if SD(t) > SI(t) then

for each channel c in X(t) not in Olist do
if max(|X(t)[:, c]|) ≥ θ then

Olist = Olist ∪ {c}
end

end
end
I(t), O(t) = Separate(X(t), Olist)
Iq(t) = InlierQuant(I(t), SI(t), bIa)
Oq(t) = OutlierQuant(O(t), bOa )
Xq(t) =Merge(Iq(t), Oq(t))
return Xq(t), Olist

Table 1. Quantization accuracy comparison of SoTA techniques
on ImageNet classification. ‘R’, ‘S’ signifies real and synthetic
calibration data.

Method Data #Images W/A Top-1 W/A Top-1 W/A Top-1

Vim-T [24]

Baseline - - 32/32 76.10 32/32 76.10 32/32 76.10
PTQ4VM [4] R 256 4/8 74.15 6/6 73.94 4/4 56.29
QMamba [9] R 1024 4/8 70.13 6/6 57.95 4/4 53.41

OuroMamba (Ours) S 128 4/8 74.98 6/6 74.84 4/4 63.49

VMamba-T [13]

Baseline - - 32/32 82.60 32/32 82.60 32/32 82.60
PTQ4VM [4] R 256 4/8 77.02 6/6 75.67 4/4 72.67
QMamba [9] R 1024 4/8 76.51 6/6 80.49 4/4 51.48

OuroMamba (Ours) S 128 4/8 81.73 6/6 80.15 4/4 77.56

Hybrid Model
MambaVision-T [5]

Baseline - - 32/32 82.30 32/32 82.30 32/32 82.30
PTQ4VM [4] R 256 4/8 72.13 6/6 69.39 4/4 67.67
QMamba [9] R 1024 4/8 71.93 6/6 68.17 4/4 65.33

OuroMamba (Ours) S 128 4/8 80.57 6/6 79.05 4/4 74.92

Table 2. W8A8 quantization ac-
curacy on ImageNet.
Model Method Data Top-1

Vim-S
FP Baseline - 81.60
PTQ4VM R 81.23
OuroMamba S 81.42

Vim-B
FP Baseline - 81.90
PTQ4VM R 80.30
OuroMamba S 80.18

Table 3. L40S GPU speedup re-
sults (Batch Size = 32).

Model Method Speedup

Vim-S PTQ4VM 1.23×
OuroMamba 1.40×

Vim-B PTQ4VM 1.29×
OuroMamba 2.06×

VMamba-B PTQ4VM 1.93×
OuroMamba 2.37×

MambaVision-T PTQ4VM 1.39×
OuroMamba 1.70×

formance. In Table 5, ‘None’ indicates no outlier detec-
tion, ‘Static’ indicates a statically (offline) identified list of
64 outlier channels, and ‘Dynamic’ corresponds to our pro-
posed scheme. Evidently, using ‘Dynamic’ outlier detec-
tion offers the best quantized model accuracy with up to
20.61% increase in accuracy over ‘Static’.

Table 4. Ablation of real v/s
synthetic samples.

Model, W/A Data Top-1

Vim-S 4/8 R 79.92
S 79.81

Vim-S 4/4 R 75.93
S 75.93

Table 5. Outlier detection ablation
Model, W/A Outlier Det. Top-1

Vim-B 4/8
None 74.28
Static 76.87

Dynamic (Ours) 80.17

Vim-B 4/4
None 0.10
Static 56.73

Dynamic (Ours) 77.34

E. GEMM Implementation Details

We first describe how the GEMM operation can be decom-
posed into separate computations for outliers and inliers.
Consider an output element Y [i, j] computed as

Y [i, j] =

K−1∑
k=0

A[i, k]W [k, j],

=
∑
k∈I

AI [i, k]W [k, j] +
∑
k∈O

AO[i, k]W [k, j],

where the inlier activations AI have the outlier positions
zeroed out, and the outlier activations AO have the inlier
positions zeroed. This decomposition guarantees that the
sum of the two partial GEMM results yields the same Y [i, j]
as the original full GEMM.

We now introduce our GEMM pipeline, which consists
of the following five steps:

1. Outlier Extraction
Outlier values in the input activation are identified, and
their corresponding positions are zeroed out. The outlier
columns are then compacted into a small INT8 outlier
buffer.

2. Inlier Extraction
With the outlier positions already zeroed out, the inlier
values are extracted and packed into INT4 buffers, stor-
ing two values per byte.

3. INT4 GEMM
An INT4 GEMM is performed on the inlier data. During
the CUTLASS epilogue, the results are immediately de-
quantized by multiplying with the activation and weight
scales. This fusion is enabled by the use of per-tensor
quantization for inliers, which offers greater efficiency
compared to the per-token inlier quantization employed
by PTQ4VM.

4. INT8 GEMM
A mixed-input INT4-INT8 GEMM is executed between
the inlier and the compacted outlier matrices, utilizing
INT8 tensor cores.

5. Outlier Dequantization and Combination
Finally, the dequantization of outliers and the combina-
tion of the two GEMM results are fused into a single
kernel. This kernel is memory-bound because it writes
the final result matrix.



Figure 1. Kernel breakdown of OuroMamba-Quant

Table 6. Memory compression comparison over PTQ4VM [4].

Vim-S [24] Vim-B [24]
Method W/A Mem. Comp. W/A Mem. Comp.
Baseline 16/16 1.00 16/16 1.00
PTQ4VM [4] 4/4 1.81 4/4 2.02
OuroMamba (Ours) 4/4 3.63 4/4 3.80

F. Speed Breakdown Results

As shown in Fig. 1, outlier extraction incurs minimal over-
head. Specifically, we partition activation by channels, so
outlier channel indices and scaling factors are calculated
and recorded in parallel. Additionally, our compact ex-
traction approach restricts the INT8 GEMM operation to a
small subset of outlier channels, limiting its runtime contri-
bution to less than 5%. As expected, the INT4 GEMM re-
mains the dominant component. The primary performance
bottleneck is the dequantization and combination step. This
step writes to the entire output matrix, making it inherently
memory-bound and therefore more expensive. Notably, the
dequantization overhead is higher in Vmamba-B because it
has a higher outlier rate (4.3%) compared to Vim-B (1.3%).
Nonetheless, even in scenarios with higher outlier densities,
our overall pipeline remains efficient due to the minimal
costs associated with both outlier extraction and the outlier
GEMM computations.

F.1. Additional GPU Speedup Results
In the main draft, Fig. 8 and Sec. 6.7 discusses speedups
on an A100 GPU for classification, generation tasks. Addi-
tionally, in Table 3 we report speedups for four models on
the classification task on a workstation-grade L40S GPU.

G. Memory Compression Results

As shown in Table 6, we compare the memory compres-
sion factor of OuroMamba with PTQ4VM at W4A4, using
the FP16 model as the baseline, on the Vim-S and Vim-
B models [24]. The results show that OuroMamba con-

Figure 2. Generated synthetic data samples.

sistently achieves a high memory compression factor of
up to 3.80× compared to the baseline FP16 model, while
PTQ4VM achieves a memory compression factor of only
2.02×, as it quantizes only the Linear layers of VMMs.

H. Extension of OuroMamba-Quant to Trans-
former based models

We extend OuroMamba-Gen to Transformer-based models
and layers by mapping the time-step dimension to the token
dimension. Outlier channels are identified per token, with
Olist propagated across tokens.

I. Text-to-Image Generation Results
Implementation. We applied OuroMamba-Quant to
PixArt-Σ [1] with 20-iteration setting. Following ViDiT-
Q [23], we quantize linear layers for query, key, and value
projections and the second projection layer of feed-forward
network to W4A4. Meanwhile, the first projection layer
of feed-forward network and the output projection in self-
attention are quantized in 8-bit for better numerical stabil-
ity, while outliers bits are fixed at 8-bit and nrefresh is set
to 10. For calibration, we follow Q-Diffusion [8] and ran-
domly sample text prompts from MS-COCO dataset [11] to
obtain outlier threshold and inlier scale factors.
Results. In Fig. 3, we visualize the generated images
of W4A8, W4A4 Ouromamba-Quant quantized PixArt-Σ
compared to W4A8 Q-DiT [2] and W4A8 PTQ4DiT [19].



Prompt: An astronaut relaxing on a beach chair, sipping coffee on Mars, with Earth visible in the sky

FP16 Baseline W4A8 Q-DiT W4A8 PTQ4DiT W4A8 OuroMamba W4A4 OuroMamba

Figure 3. Quantization performance comparison for text-to-image generation task.

J. Additional Synthetic data samples

In Fig. 2, we additionally visualize synthetic samples gen-
erated by OuroMamba-Gen for image classification, object
detection and segmentation tasks for Vim-B model [24].
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