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Supplementary Material

In this Supplementary Material, we have provided addi-
tional details for the following:
• Hyperparameters (Sec. 7)
• Class Groupings (Sec. 8)
• Text Construction (Sec. 9)
• Text Embedding Analysis (Sec. 10)
• Ablations (Sec. 11)
• Experiments with TITAN (Sec. 12)
• Additional Modalities (Sec. 13)
• Qualitative Analysis (Sec. 14)

7. Hyperparameters
We display additional hyperparameters used to train Modal-
Tune in Tab. 6.

8. Class Groupings
In the TCGA dataset, clinician-annotated cancer subtypes
are highly detailed. However, predicting each individual
subtype is infeasible due to their large number and the lim-
ited cases for certain subtypes. Therefore, we grouped the
subtypes into broader categories and Rare-set class with the
help of OncoTree code [37], as shown in Tab. 4. Subtypes
in Rare-set classes were used for generating text embed-
dings but were excluded from baseline training due to their
low sample size. Additionally, we merged subtypes with
minor differences (e.g., ”Squamous cell carcinoma, kera-
tinizing” and ”Squamous cell carcinoma, large cell, nonker-
atinizing” were grouped as ”Squamous cell carcinoma”).
The final subtype bins for different cancer types are pre-
sented in Tab. 4.

For survival prediction task, we categorized survival du-
rations into four bins, ensuring an approximately equal
number of patients in each. The bin limits were then used
to generate textual descriptions, as illustrated in Tab. 5.

9. Text Construction
We construct the embedded text prompts used to train
ModalTune from clinical tables in .csv format available
with all TCGA slides. This is done by firstly cleaning the
table entries and converting them to natural language to take
better advantage of semantic relationships in text. For ex-
ample, we convert node status 0 (N0) to: ”cancer has not
spread to lymph nodes”. For text related to tumor, node,
metastastasis (TNM) staging, we also bin sub-categories of
stages into a single stage to reduce variability of text em-
beddings (e.g. T1a, T1b, and T1c become ”tumor stage

Cancer Type Class Groupings
BRCA 0: Infiltrating duct carcinoma

1: Lobular carcinoma
Rare-set: infiltrating duct and lobular carcinoma, infiltrating
(duct/lobular) mixed with other types of carcinoma, mucinous adeno-
carcinoma, metaplastic carcinoma, medullary carcinoma, intraductal
papillary adenocarcinoma with invasion, tubular adenocarcinoma, ade-
noid cystic carcinoma, cribriform carcinoma

GBMLGG 0: Glioblastoma
1: Mixed glioma, Oligodendroglioma, Astrocytoma, Oligoden-
droglioma anaplastic, Astrocytoma anaplastic

NSCLC 0: Lung adenocarcinoma
1: Lung squamous cell carcinoma
Rare-set: lung bronchiolo-alveolar carcinoma, lung papillary adenocar-
cinoma, lung acinar cell carcinoma, lung basaloid squamous cell car-
cinoma, lung solid carcinoma, lung signet ring cell carcinoma, lung
papillary squamous cell carcinoma, lung micropapillary carcinoma

RCC 0: Papillary renal cell carcinoma
1: Renal clear cell carcinoma
2: Chromophobe renal cell carcinoma

COADREAD 0: Colon adenocarcinoma
1: Rectal adenocarcinoma
Rare-set: colon mucinous adenocarcinoma, rectal mucinous adenocar-
cinoma, rectal adenocarcinoma in tubolovillous adenoma, rectal tubular
adenocarcinoma, colon papillary adenocarcinoma

BLCA 0: Transitional cell carcinoma
1: Papillary transitional cell carcinoma

Table 4. Cancer subtype groupings for different cancer types

Cancer Type Duration Bins
BRCA 0: before 15 months

1: between 15 and 27 months
2: between 27 and 55 months
3: between 55 and 283 months

GBMLGG 0: before 8 months
1: between 8 and 17 months
2: between 17 and 31 months
3: between 31 and 211 months

NSCLC 0: before 12 months
1: between 12 and 22 months
2: between 22 and 39 months
3: between 39 and 238 months

RCC 0: before 16 months
1: between 16 and 34 months
2: between 34 and 62 months
3: between 62 and 169 months

COADREAD 0: before 12 months
1: between 12 and 21 months
2: between 21 and 36 months
3: between 36 and 148 months

BLCA 0: before 11 months
1: between 11 and 18 months
2: between 18 and 30 months
3: between 30 and 163 months

Table 5. Duration bins for different cancer types. The text is used
by ModalTune and the bin labels are used as labels by baselines

1”). We use the cancer subtype texts obtained after the pre-
processing steps described in (Sec. 8).

We then describe the type of event (censored or an event
occurred) along with a description of the bin as shown in
Tab. 5. For example, a patient censored at 144 months
would have the status: ”The patient was censored between



Parameter Value
Slide encoder settings

Embedding dim, D 768
Layers, L 12
Attention heads 16
Feedfoward dim 3072
Dilated attention segment lengths [1024, 2048, 4096, 8192, 16384]
Dilated attention ratios [1, 2, 4, 8, 16]
Activation function GELU

Transcriptomics encoder settings
Embedding dim, Dgp 256
# Compressed pathways, Nt 64
Layers 3
Feedforward expansion ratio 0.5
Dropout 0.25
Activation function GELU

ModalTune settings
Embedding dim, D 768
Adapter blocks, B 3
Adapter cross-attention heads 12
Adapter feedforward expansion ratio 0.25
Adapter dropout 0.1
Adapter initial gamma, γi

0 0
Final output dim, Dfinal 256
Text embedding dim, Dtext 512

Training settings
Epochs 30
Optimizer AdamW
Max LR 1e-4
LR scheduler LinearWarmupCosineAnnealing
Warmup epochs 10
Weight decay 0.0005
Batch size 1

Inference settings
Logistic regression max iters 200
Logistic regression solver liblinear
CPH penalizer 0.1

Table 6. Additional ModalTune hyperparameters.

55 and 283 months”.

Task-specific text prompts contain information that is
directly relevant to the task. For subtype classification
(j = 3), we included the cancer site and the cancer sub-
type. For survival prediction (j = 2), we included the can-
cer site, TNM stages, and the survival status of the patient
as described above. For the general task (j = 1), we merged
the two prompts (only mentioning cancer site a single time).
We chose to include TNM staging information for the sur-
vival and general tasks to better estimate and delineate risk
between patients. We found staging to be prognostic, im-
proving performance over solely relying on survival dura-
tion bins (Tab. 7). In any cases where TNM stage is not
available (like the full patient cohort of GBMLGG), we sim-
ply omit stage-related text from the prompt. Example text
generated for the low-risk patient in Fig. 3 is displayed in
Fig. 4.

Figure 4. Example text prompts generated for the low-risk patient
in Fig. 3. Text in bold and red are directly obtained from clinical
tables in TCGA after being clearned and converted to natural lan-
guage.

10. Text Embedding Analysis
We analyze performance across different tasks using (j =
1) general task embeddings to confirm whether the text em-
beddings capture task-relevant information. Logistic re-
gression is used for cancer subtyping and duration bin pre-
diction, while cox proportional hazards model is applied for
survival prediction. We report the mean and standard devi-
ation of balanced accuracy for classification tasks and the
C-index for survival prediction, averaged over three random
seeds. We used the same splits as those used for other ex-
periments. Overall, as shown in Tab. 7, we observe near-
perfect performance across all tasks. Adding stage infor-
mation to the general embedding slightly improves the C-
index. Overall, as shown in Tab. 7, we observe near-perfect
performance across all tasks. Adding stage information to
the general embedding slightly improves the C-index. Ran-
dom projections preserve the tight clusters, maintaining per-
formance across multiple seeds and exhibiting similar per-
formance in all of the tasks with minor degradations. This
does not impact ModalTune; in fact, it enhances its perfor-
mance in both cancer subtype prediction and survival pre-
diction, as shown in Tab. 8.

11. Ablation Studies
In this section, we investigate multiple key design choices
in our study: impact of different Modal Adapters, the ef-
fect of Modal Adapters, the effect of text embeddings, the
impact of training solely on general prompts, the impact of
different text encoders and Projectors, illustrated in Tab. 8.

11.1. Modal Adapters
Different Modal Adapters (LoRA): We compared Modal-
Tune by extending LoRA [26], instead of using the ViT



Tasks Text Embedding Text Embedding after random projection
Cancer Subtyping 1.000± 0.000 1.000± 0.000
Duration Bins 1.000± 0.000 0.998± 0.002
Survival prediction w/o stage 0.966± 0.000 0.968± 0.000
Survival prediction 0.972± 0.000 0.970± 0.001

Table 7. Text embedding performance on different tasks on TCGA BRCA. We report balanced accuracy for cancer subtyping (2 class
classification) and duration bins (4 class classification), and C-index for Survival prediction tasks

Ablation BRCA GBMLGG NSCLC RCC Overall
Cancer Subtype Prediction

Single Modal 0.887± 0.029 0.937± 0.012 0.926± 0.002 0.930± 0.009 0.920
No Text Embedding 0.885± 0.012 0.998± 0.002 0.956± 0.002 0.954± 0.005 0.948
Single Task Prompt 0.855± 0.005 0.995± 0.004 0.950± 0.005 0.939± 0.016 0.935
ABMIL (cat) w/ text emb. 0.874± 0.024 0.973± 0.021 0.934± 0.006 0.906± 0.012 0.922
ModalTune w/ LoRA 0.883± 0.026 0.998± 0.003 0.960 ± 0.001 0.920± 0.033 0.940
ModalTune w/ MedLlama v3.1 0.853± 0.011 0.993± 0.006 0.919± 0.009 0.918± 0.013 0.921
No Projector 0.891± 0.024 0.997± 0.002 0.948± 0.005 0.951± 0.011 0.947
Trainable Projector 0.612± 0.017 0.542± 0.023 0.768± 0.024 0.685± 0.078 0.652
Model-side Projector 0.898± 0.003 0.993± 0.003 0.956± 0.006 0.918± 0.044 0.941
ModalTune 0.899 ± 0.026 1.000 ± 0.000 0.956± 0.010 0.959 ± 0.003 0.954

Survival Prediction
Single Modal 0.730± 0.025 0.821± 0.016 0.586± 0.013 0.689± 0.018 0.707
No Text Embedding 0.724± 0.024 0.881± 0.006 0.631 ± 0.010 0.682± 0.022 0.730
Single Task Prompt 0.757± 0.014 0.872± 0.005 0.585± 0.018 0.741± 0.007 0.739
ABMIL (cat) w/ text emb. 0.742± 0.016 0.869± 0.024 0.603± 0.033 0.710± 0.011 0.731
ModalTune w/ LoRA 0.756± 0.038 0.894 ± 0.008 0.598± 0.011 0.728± 0.032 0.744
ModalTune w/ MedLlama v3.1 0.752± 0.032 0.868± 0.011 0.603± 0.036 0.733± 0.012 0.739
No Projector 0.726± 0.007 0.868± 0.005 0.612± 0.028 0.714± 0.016 0.730
Trainable Projector 0.693± 0.029 0.803± 0.016 0.610± 0.008 0.694± 0.027 0.700
Model-side Projector 0.771± 0.037 0.888± 0.007 0.594± 0.009 0.712± 0.019 0.742
ModalTune 0.772 ± 0.008 0.879± 0.004 0.608± 0.023 0.743 ± 0.004 0.750

Table 8. Ablations across different tasks and cancer types investigating key design choices of ModalTune. Best model in bold, second best
is underlined

Adapter–based Modal Adapter, to handle transcriptomics
and its interactions with the slide encoder. Overall, we ob-
served that LoRA slightly underperformed ModalTune in
both cancer subtype classification (1.5% drop) and survival
prediction (0.8% drop), thereby motivating our choice of
the Modal Adapter architecture.

Effect of Modal Adapters: To assess more deeply if the
Modal Adapter architecture provides benefits in uni-modal
fine-tuning, we evaluate the performance of ModalTune by
replacing transcriptomics tokens from the genomic encoder
with the same number and dimension of randomly initial-
ized trainable embedding vectors (‘Single Modal’). We
find that overall, the model outperforms all other image-
only models (Tab. 2) in subtype classification and has com-
petitive performance in survival prediction. This effect is
most pronounced when compared against the Gigapath fully
fine-tuned model, where the model demonstrates superior
performance across cancer subtype classifications and sur-
vival prediction (0.9%; 3.4%). Fine-tuning with the Modal
Adapter setup requires updating fewer parameters than fully

tuning Gigapath. Thus, this experiment demonstrates both
the efficiency and effectiveness of the proposed architec-
ture.

11.2. Multi-task using Texts
To examine the effect of multi-task learning, we train the
Modal Adapter in a single-task manner, without embedding
the tasks using text (‘No Text Embedding’). We found can-
cer subtype prediction (0.6% drop) was less affected than
survival prediction (2.7% drop), indicating the latter utilized
more information from other tasks than the former. These
findings indicate the utility of using text embeddings for
multi-task learning and suggest that inter-task information
is beneficial for downstream performance.

We also tested the utility of text embeddings for multi-
task learning on other architectures such as ABMIL (cat)
(‘ABMIL (cat) w/ text emb.’), and found that compared to
ABMIL (cat) trained on single tasks, there was an overall
drop in performance for cancer subtype classification (1.6%
drop), while performance for survival prediction remained
similar. However, better architectures like ModalTune, in-



TITAN exp. BRCA GBMLGG NSCLC RCC Overall
Cancer Subtype Prediction

TITAN LP [17] 0.809 0.965 0.941 0.943 0.914
TITAN (Tuned) [17] 0.845± 0.007 0.948± 0.020 0.938± 0.002 0.951 ± 0.003 0.920
TITAN (cat) [17] 0.849± 0.010 0.998 ± 0.002 0.940± 0.018 0.941± 0.016 0.932
TITAN (KP) [17] 0.825± 0.011 0.998 ± 0.003 0.955 ± 0.003 0.949± 0.022 0.932
ModalTune TITAN 0.872 ± 0.013 0.997± 0.002 0.950± 0.003 0.948± 0.012 0.942

Survival Prediction
TITAN LP [17] 0.710 0.770 0.552 0.677 0.677
TITAN (Tuned) [17] 0.732± 0.009 0.832± 0.006 0.620 ± 0.005 0.717± 0.002 0.725
TITAN (cat) [17] 0.745± 0.046 0.850± 0.010 0.604± 0.008 0.729 ± 0.008 0.732
TITAN (KP) [17] 0.739± 0.018 0.866 ± 0.018 0.571± 0.008 0.719± 0.008 0.724
ModalTune TITAN 0.753 ± 0.012 0.858± 0.016 0.604± 0.012 0.725± 0.023 0.735

Table 9. Cancer subtype prediction balanced accuracy and survival prediction C-index scores across 4 cancer types for TITAN slide
encoder. Best model in bold, second best is underlined. Here, LP refers to linear probing, cat refers to concatenation, and KP refers to
Kronecker product.

Multimodal exp. BRCA GBMLGG NSCLC RCC Overall
Cancer Subtype Prediction

ModalTune 0.899± 0.026 1.000 ± 0.000 0.956± 0.010 0.959 ± 0.003 0.954
ModalTune w/ Clinical 0.904 ± 0.020 0.998± 0.003 0.959 ± 0.001 0.938± 0.010 0.950

Survival Prediction
ModalTune 0.772± 0.008 0.879± 0.004 0.608± 0.023 0.743± 0.004 0.750
ModalTune w/ Clinical 0.777 ± 0.012 0.885 ± 0.013 0.609 ± 0.016 0.748 ± 0.019 0.755

Table 10. Experiments with incorporating clinical data alongside transcriptomics in ModalTune. Best model in bold.

COADREAD BLCA
Cancer Subtype Prediction

TITAN LP 0.556 0.675
TITAN Sup. (cat) 0.585± 0.026 0.694± 0.013

TITAN Cls. (cat) 0.511± 0.018 0.526± 0.044
TITAN Surv. (cat) 0.522± 0.020 0.597± 0.018
ModalTune TITAN 0.583 ± 0.089 0.691 ± 0.016

Survival Prediction
TITAN LP 0.562 0.615
TITAN Sup. (cat) 0.593± 0.036 0.679± 0.015

TITAN Cls. (cat) 0.483± 0.038 0.617 ± 0.017
TITAN Surv. (cat) 0.549± 0.051 0.609± 0.032
ModalTune TITAN 0.581 ± 0.062 0.611± 0.063

Table 11. Generalization study on OOD datasets using different
TITAN-based models, compared with TITAN Sup. (cat) trained
directly on the OOD data. Best OOD model in bold, second best
is underlined.

corporating interaction terms, were able to achieve substan-
tially improved performance when trained with text embed-
dings.

11.3. Task-Prompts

Here we investigate the role of using a multi-task prompt
formulation versus simply pooling all tasks together into a
general prompt, and performing single-task training. We
do so by comparing our baseline model trained using both

general and task-specific text embeddings (T = 3, ‘Modal-
Tune’) versus a model trained solely on a general prompt
(T = 1, ‘Single Task Prompt’). Our results indicate that
training with a single task prompt worsens overall model
performance (2.0% drop in subtype prediction, 1.5% drop
in survival prediction), potentially due to the regulariza-
tion effects introduced by additional constraints that max-
imize the KL divergence between individual task-specific
text vectors.

11.4. Text encoders

To evaluate the performance of ModalTune when using
a different text embedding LLM, we tested Llama-3-8B-
UltraMedical [75]. We observed a major drop in perfor-
mance compared to ModalTune (3.4% in subtype predic-
tion, 1.5% in survival prediction). We hypothesize several
reasons for this decline. First, Llama-3-8B-UltraMedical is
a general-purpose model trained on large-scale medical text
datasets, whereas CONCH was trained in a contrastive man-
ner using histopathology-related text datasets against im-
age patches. This specialized training likely made CONCH
a better fit for our use case, leading to superior perfor-
mance. Similar findings were also reported in [30], where
specialized models outperformed the generic model in the
molecular status prediction task. Additionally, Llama-3-
8B-UltraMedical is a generative model, requiring mean-



pooling after encoding to obtain a single 4096-dimensional
text representation. In contrast, CONCH directly outputs a
more compact text representation (512-dimensions), which
may reduce the chance of overfit and hence improve Modal-
Tune training.

11.5. Projectors

We found ModalTune to perform best when using a frozen
and randomly-initialized Projector (‘ModalTune’), which
we explore here. Removing the Projector (‘No Projector’)
simply requires adjusting the final output dimension Dfinal

to 512, matching the dimensionality of text embeddings,
Dtext. This adjustment resulted in a drop in performance
(0.7% in cancer subtype, 2.7% in survival prediction). We
expect this occurred because the noise introduced by the
random Projector has a regularizing effect on training, re-
ducing model overfit on specific cancer sites. This has also
been explored by Arani et. al. [3], where the introduction
of noise in the knowledge distillation framework had posi-
tive effects. We additionally explore training the randomly-
initialized Projector (‘Trainable Projector’), which results in
severe degradations in performance on both tasks. We be-
lieve this is due to model collapse, where the KL divergence
loss function could be easily minimized by having the pro-
jector and the Modal Adapter output trivial solutions. The
impact on survival prediction is less pronounced, which we
attribute to the C-index metric being dependent only on rel-
ative ordering of risk scores. To avoid model collapse while
tuning the Projector, we attach it to the end of the Modal
Adapter instead of the text embeddings (‘Model-side Pro-
jector’). We found best results when using a trained linear
projection, though it still results in slightly inferior perfor-
mance.

While unorthodox, these findings do align with prior
studies highlighting the utility of randomly-initialized and
fixed projectors in extracting non-trivial features in var-
ious scenarios. Of particular relevance to ModalTune,
random projectors are effective feature extractors, reduc-
ing dimensionality and producing powerful representations
[2, 55, 76]. Additionally, random projectors largely pre-
serve inter-sample distances, as discussed in [22, 76], i.e.,
they maintain smaller distances between samples of the
same class and larger distances between samples from dif-
ferent classes. This is evident empirically through the per-
formance of linear regression on text embeddings (Tab. 7)
with and without random projectors and theoretically from
the Johnson-Lindenstrauss lemma [34], as discussed in
Boutsidis et al. [6]. Given that clusters in the dataset are
largely preserved and we opt to perform simple linear prob-
ing on extracted features, we expect the fixed random Pro-
jector to be a viable, generalizable, and effective projection
method for ModalTune.

Overall, we find that using Modal Adapters, combining

tasks with a text embedding, using multiple task prompts,
and employing a fixed, randomly initialized Projector are
all key components of ModalTune’s success in improving
the fine-tuning of SLFMs.

12. Experiments with TITAN

To demonstrate the ability of ModalTune to extend to other
Transformer-based SLFMs, we perform experiments inter-
facing it with the TITAN [17] SLFM. To do so, we first
re-extract patch features using the method described in the
original work. We then perform analogous comparisons
to Gigapath-ModalTune (Tab. 9). We found TITAN to be
a much stronger standalone model than Gigapath, obtain-
ing strong results with only linear probing or fine-tuning.
Nonetheless, we find TITAN benefits from the bulk tran-
scriptomics modality over uni-modal fine-tuning (1.3% in
subtype classification, 1.0% in survival prediction), and
slightly improves when tuned using the ModalTune pipeline
(1.1%, 0.4%).

We additionally probe the generalizability of ModalTune
TITAN similarly to the generalization study in Sec. 4.4
(Tab. 11). We found the ModalTune framework to greatly
benefit OOD prediction performance on COADREAD and
BLCA, with an average of 13.9% improvement in subtype
prediction and 2.9% improvement in survival prediction
than the next best OOD baseline. Furthermore, ModalTune
demonstrated generalizability, performing only 0.4% worse
than a fully-supervised TITAN (cat) network in subtype pre-
diction and 6.3% worse in survival prediction. Thus, even
though we obtained modest improvements from in-domain
validation, we emphasize ModalTune maintains SLFM gen-
eralization better than conventional tuning methods.

13. Additional Modalities

To validate ModalTune’s extensibility, we integrated clini-
cal data (m2) for TCGA by incorporating available features:
patient age (all); TNM staging (BRCA, NSCLC, RCC);
treatment type (BRCA only); and hormone receptor status
(BRCA only). A 2-layer MLP encodes m2 into R1×D for
concatenation with transcriptomics [Sec. 3.2]. Overall, in
our experiments shown in Tab. 10, the addition of clinical
data marginally improved ModalTune’s performance, pri-
marily for survival prediction, while in the case of RCC
subtype classification, it even led to a degradation, possi-
bly because the clinical features for RCC are less relevant
for the subtype classification task. This highlights Modal-
Tune’s ability to integrate salient features across modalities,
though incorporating additional modalities remains a direc-
tion for future work.



14. Qualitative Analysis
14.1. t-SNE Analysis
After training ModalTune and ModalTune Pan-Cancer, we
extract embedding vectors from combined train, validation,
and testing datasets for every cancer site. For standard
ModalTune, we extract embeddings using the best model
per cancer site. For ModalTune Pan-Cancer, we simply use
the overall best model. t-SNE plots of the extracted embed-
dings, along with text embeddings, are visualized in Fig. 5.

Notably, regardless of cancer sites being trained sepa-
rately or together in a pan-cancer setup, embedding vec-
tors distinctly cluster into individual sites. This may par-
tially explain why we found minimal benefit in in-domain
datasets from the pan-cancer experiments, as there is not
much shared information between sites. We see much bet-
ter separation in the former when comparing GBMLGG for
standard ModalTune versus ModalTune Pan-Cancer. We
expect this is due to issues with convergence mentioned in
Sec. 4.5, where the best pan-cancer model had not yet con-
verged on GBMLGG. In all other cases, embeddings are
clearly clustered into groups based on primary diagnosis.
In contrast, while text embeddings remain well separated
for vital status and survival duration, separation is not as
clear for embeddings from ModalTune. This is likely due
to the inherently noisy nature of survival prediction. Since
text prompts are directly created from clinical data and can
only take discretized values, text embeddings are markedly
more sparse than those generated from ModalTune.

14.2. Kaplan Meier Analysis
Although a high c-index risk model is preferred, it is equally
important for the model to stratify patients into two dis-
tinct groups to aid clinicians in making treatment decisions,
allowing them to choose between more or less aggressive
interventions based on the patient’s risk group. We used
Kaplan-Meier curves on the test set to visualize this strati-
fication, comparing high-risk and low-risk groups. The two
groups were then assessed using a log-rank test to measure
differences between their survival distributions, with a sig-
nificance threshold set at α = 0.05. In Fig. 6, we com-
pare ModalTune against the best-performing survival mod-
els from image-only, genomics-only, and multi-modal cat-
egories, as well as Gigapath (cat). ModalTune consistently
maintains significance in patient stratification across all four
cancer types. ModalTune is the only model whose stratifica-
tion was significant for NSCLC. Interestingly, the Kaplan-
Meier curves for both ModalTune and Gigapath (cat) show
strong similarities in patient stratification and their pattern,
with ModalTune achieving improved stratification through
better integration of transcriptomics information.



Figure 5. t-SNE plots generated for embeddings extracted using ModalTune (first row), ModalTune Pan-Cancer (second row), and text
embedding vectors (third row). From left to right, each data point is colored by cancer site, primary diagnosis, vital status, and survival
duration.



Figure 6. Kaplan-Meier curves of ModalTune and the best-performing survival model baselines across four cancer types. Patient groups
are stratified based on the median of model-estimated risk scores on the test set, with orange representing the low-risk group and blue
representing the high-risk group. A log-rank test with a significance threshold of α = 0.05 was used to assess differences between the two
distributions


	Hyperparameters
	Class Groupings
	Text Construction
	Text Embedding Analysis
	Ablation Studies
	Modal Adapters
	Multi-task using Texts
	Task-Prompts
	Text encoders
	Projectors

	Experiments with TITAN
	Additional Modalities
	Qualitative Analysis
	t-SNE Analysis
	Kaplan Meier Analysis


