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Supplementary Material

A. Impact of augmentations on encoding of
metadata in CVLs

To verify our assumption that one of the main reasons that
SSL models generally encode less metadata information is
the use of heavy augmentations, we train a CVL model us-
ing OpenCLIP [2] both without heavy augmentation (de-
fault OpenCLIP setup) and with DINOv2 [5] style color
augmentations.1 We train a ViT-B/32 CVL model both from
scratch and finetuned from the LAION-2B checkpoint on
the YFCC15M dataset [6]. We follow the default training
hyperparameters from OpenCLIP, which is training for 32
epochs with a batch size of 32k using the AdamW [4] op-
timizer. We utilize the cosine scheduler with a warmup of
2, 000 iterations. Learning rate is set to 5e−4 and weight
decay is equal to 0.2.

Fig. A and Fig. B present the results for processing-
based and acquisition-based metadata label prediction, re-
spectively. Augmentations greatly reduce the accuracy of
processing-based metadata label prediction. We observe a
similar trend for acquisition-based metadata labels, though
not to the same extent and consistency.

Fig. C presents the results for the effects of processing
on the downstream tasks. Augmentations greatly reduce
the influence of processing parameters on the prediction of
semantics.

Although these results point to the lack of heavy aug-
mentations in CVLs as one of the main reasons for their
strong encoding of metadata information, further investiga-
tion is still necessary, as some CVL models, like SigLIP [7],
encode less metadata information, although they do not em-
ploy heavy augmentations.

B. Parameters description

We consider the following processing and acquisition pa-
rameters.

• JPEG compression is one of the most common op-
erations that will be applied to an image after its ac-
quisition. JPEG applies lossy compression where the
amount of compression can be controlled by the qual-
ity and chroma-subsampling parameters. To investigate
the influence of JPEG compression on image representa-
tions, we recompress images using quality ∈ {75, 85, 95}
and chroma-subsampling ∈ {4:2:0, 4:4:4}, which gives
|P| = 6 possible processing parameter values.

1We use color jitter, random grayscaling, and random blurring.

• Sharpening corrects pixel values such that the image ap-
pears sharper, and is commonly automatically applied by
different services [3]. We use unsharp mask based sharp-
ening of an image I given as sharp(I) = αI + (1 −
α)blur(I) where α controls the sharpness of the image.
α = 1 gives the original image, while α > 1 gives a
sharper image. For P we consider a set of processing pa-
rameter values given when α ∈ {1, 2, 4}.

• Resizing is a common operation applied to images, after
their acquisition, that changes the dimension of the im-
age. To evaluate the influence of resizing, we set process-
ing parameter values as P = {1x, 0.5x, 2x} that define
original image, image where both width and height are
halved, and image where both width and height are dou-
bled, respectively. We use bilinear interpolation.

• Interpolation defines the interpolation function used dur-
ing image resizing. To evaluate the influence of inter-
polation function, we set processing parameter values
as P = {bilinear, bicubic, lanczos, box}, and we resize
each image by changing its both sides by r% where
r ∼ Uniform[−20, 20]. 2

• Make refers to the manufacturer of the camera, based on
Exif metadata. Based on our setup, our analysis is based
on nine manufacturers, namely Apple, Canon, EAST-
MAN KODAK COMPANY, FUJIFILM, NIKON, OLYM-
PUS OPTICAL CO.,LTD, Panasonic, SONY, and Sam-
sung.

• Model (all) refers to the specific camera model used to
capture the photo. We study 88 different camera models,
shown in Tab. A.

• Model (smart) refers to the specific camera model used
to capture the photo, but only among photos captured by
smartphones. The 12 classes we study are also shown
in Tab. A.

• Model (smart vs non-smart) is a binary parameter that
indicates whether the camera used to shoot the photo was
a smartphone. When analyzing this parameter, we use a
subset of data that was curated to conveniently identify
non-smartphones images and smartphone images. The
former comprise all images taken with a camera manufac-
tured by Canon, Nikon, Fujifilm, Panasonic, or Olympus;
while the latter comprise all images taken with a smart-
phone manufactured by Apple, Google, Huawei, Xiaomi,
or Motorola.

• Exposure refers to the amount of time that light was al-

2Note that the same value of r is applied per image across all different
interpolations.



W/o augmentations With augmentations From scratch Finetuned Random

0 1 3 4

20

40
ac

cu
ra

cy

JPEG

0 1 3 4

40

60

80

Sharpening

0 1 3 4

40

60

80

Resizing

0 1 3 4

25

30

35

40

Interpolation

0 1 3 4

15

20

25

30

ac
cu

ra
cy

0 1 3 4

30

40

50

60

0 1 3 4

30

40

50

0 1 3 4

24

26

28

30

Figure A. Image processing-based label prediction using a CVL model trained with and without augmentations. Classification
accuracy using a linear classifier on embeddings of frozen visual encoders on ImageNet (top) and iNaturalist (bottom) datasets. CVL
model trained both from scratch and finetuned starting from a LAION-2B checkpoint.
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Figure B. Image acquisition-based label prediction using a CVL model trained with and without augmentations. Classification
accuracy using a linear classifier on embeddings of frozen visual encoders with images masked at 90% on the FlickrExif dataset. CVL
model trained both from scratch and finetuned starting from a LAION-2B checkpoint.
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Figure C. Impact of image processing parameters on semantics for a CVL model trained with and without augmentations. Semantic
label prediction accuracy on ImageNet (top) and iNaturalist (bottom) datasets in five different setups. All-same (baseline): all training and
test images share the same processing-based metadata label. All-diff : training images have the same metadata label, which is different
than that of the test image. Pos-same: training images that are semantically positive to the test image have the same metadata label as the
test image. Neg-same: training images that are semantically negative to the test image have the same metadata label as the test image.
Uniform: the metadata labels are uniformly assigned to the training images. Pos-same and neg-same settings require an artificially created
experiment where a different training set is used per test image. CVL model trained both from scratch and finetuned starting from a
LAION-2B checkpoint. Shown for k = 10 and k = 1 for the kNN classifier for ImageNet and iNaturalist, respectively.



Table A. All 88 camera models studied when analyzing the acquisition attribute model (all). Names are presented as they were found in
the Exif metadata. Underlined models refer to smartphones analyzed under the model (smart) parameter.

CYBERSHOT Canon EOS DIGITAL REBEL NIKON D3100 NIKON D800
Canon EOS 10D Canon EOS DIGITAL REBEL XT NIKON D3200 NIKON D810
Canon EOS 20D Canon EOS R NIKON D40 NIKON D850
Canon EOS 300D DIGITAL Canon EOS R5 NIKON D5 NIKON D90
Canon EOS 30D Canon EOS R6 NIKON D50 NIKON Z 6
Canon EOS 350D DIGITAL Canon EOS REBEL T3i NIKON D500 NIKON Z 6 2
Canon EOS 40D Canon EOS Rebel T6 NIKON D5000 NIKON Z 9
Canon EOS 450D Canon EOS-1D X NIKON D5100 X-T2
Canon EOS 50D Canon EOS-1D X Mark II NIKON D5200 X-T3
Canon EOS 5D E-M1MarkII NIKON D5300 X-T4
Canon EOS 5D Mark II E5700 NIKON D5500 iPhone 11
Canon EOS 5D Mark III E990 NIKON D5600 iPhone 11 Pro Max
Canon EOS 5D Mark IV ILCE-6000 NIKON D600 iPhone 12 Pro
Canon EOS 600D ILCE-6400 NIKON D610 iPhone 12 Pro Max
Canon EOS 60D ILCE-7 NIKON D70 iPhone 13 Pro
Canon EOS 6D ILCE-7M3 NIKON D700 iPhone 6
Canon EOS 6D Mark II ILCE-7RM2 NIKON D7000 iPhone 6s
Canon EOS 70D ILCE-7RM3 NIKON D7100 iPhone 7
Canon EOS 7D Kodak CLAS Digital Film Scanner / HR200 NIKON D7200 iPhone 7 Plus
Canon EOS 7D Mark II NIKON D100 NIKON D750 iPhone X
Canon EOS 80D NIKON D200 NIKON D7500 iPhone XR
Canon EOS 90D NIKON D300 NIKON D80 iPhone XS

lowed to enter the camera while taking the photo. This is
a rational number, which in our data ranges from 1/1, 000
seconds to 1/30 seconds.

• Aperture refers to size of the opening in the lens and the
corresponding amount of light thus allowed to enter the
camera while taking the photo. This is measured in f-
numbers, calculated as the ratio between the focal length
and the diameter of the lens opening. In our experiments,
these ratios range from 1.8 to 11.

• ISO Speed is a parameter that measures the camera sen-
sor’s sensitivity to light, with higher values leading to
higher sensitivity and lower values leading to lower sensi-
tivity. In our data, these numbers range from 50 to 3200.

• Focal Length describes the distance between the center
of the camera’s lens and the camera’s sensor. This is typ-
ically measured in mm. Our data covers focal lengths
ranging from 4 mm to 200 mm.

C. PairsCams dataset
Cameras used to collect the PairsCams dataset are shown in
Table B with the number of images taken by each camera.

D. Visual encoders
Our visual encoders are acquired from the following reposi-
tories: OpenAI,3 OpenCLIP,4 timm,5 and FAIR.6 We follow
each encoder’s default preprocessing to extract image rep-
resentations. This typically involves resizing images based
on their smaller side, followed by center-cropping to the

3https://github.com/OPENAI
4https://github.com/mlfoundations/open_clip
5https://github.com/huggingface/pytorch-image-

models
6https://github.com/facebookresearch/moco-v3

Table B. Cameras used during data collection. Each object or
scene is captured by two cameras, leading to a total of 1,460 pho-
tos from 730 pairs.

model type year images

iPhone XR smartphone 2018 295
Canon IXY 630 compact 2014 285
Pixel 4 smartphone 2019 190
iPhone SE (3rd generation) smartphone 2022 120
Sony Cyber-shot DSC-WX300 compact 2013 120
Olympus C-8080 Wide Zoom compact 2004 100
Casio Exilim EX-FH20 compact 2008 100
Canon EOS 450D DSLR 2008 80
Xiaomi Poco X5 Pro smartphone 2023 40
iPhone 12 smartphone 2020 26
iPhone 14 Pro smartphone 2022 25
Olympus µ700 compact 2006 25
Nothing Phone (2) smartphone 2023 20
iPhone 12 Pro smartphone 2020 14
Motorola Moto G XT1032 smartphone 2013 10
Nikon Coolpix S200 compact 2007 10

total 1,460

encoder’s input resolution, and normalization of the image
tensor.

E. Additional results on ImageNet-ES
An existing dataset that can be used for acquisition label
prediction is ImageNet-ES [1], which contains ImageNet
images that have been recaptured under varying acquisition
settings, including ISO, shutter speed, aperture, and lighting
conditions. Originally designed for out-of-distribution de-
tection, the dataset features disjoint test and training labels.
Thus, we randomly split the provided validation set into our
own training and test sets using a 9:1 ratio. We follow the
hyperparameter tuning and training protocol described in

https://github.com/OPENAI
https://github.com/mlfoundations/open_clip
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models
https://github.com/facebookresearch/moco-v3
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Figure D. Image acquisition-based label prediction on ImageNet-ES. Classification accuracy using a linear classifier on embeddings of
frozen visual encoders with no masking. Ordering is according to Tab. C.

Sec. 3, using 12.5% of the training set for validation. Each
image is annotated with metadata labels according to their
aperture, ISO, and shutter speed labels, formulating a four-
class classification task for each attribute.

Fig. D presents the performance of classifiers trained
on frozen embeddings for the prediction of each attribute.
Models across all categories achieve classification accuracy
well above random chance. We attribute this to the broad
range of values of the acquisition parameters used to create
ImageNet-ES. For example, the ISO values of ImageNet-
ES’s validation set ranges from 200 to 12, 800, while the
corresponding values in FlickrExif only range from 50 to
3, 200. This wider range may result in more visually distin-
guishable cases compared to those in FlickrExif.

F. Effect of masking

In this section, we assess the impact of the masking applied
for the prediction of acquisition labels in Sec. 3.2. Fig. E
and Fig. F show the classification accuracy on FlickrExif
with 0% and 75% masking, respectively. Comparing the
two figures with Fig. 6, we observe that retaining semantic
information in the input images makes it easier to identify
acquisition labels, leading to higher classification accuracy.
This suggests potential correlations between acquisition la-
bels and semantic content, which can be exploited by the
models to achieve a better performance.
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Figure E. Image acquisition-based label prediction on FlickrExif without masking. Classification accuracy using a linear classifier.
Ordering is according to Tab. C.
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Figure F. Image acquisition-based label prediction on FlickrExif with a 75% masking ratio. Classification accuracy using a linear
classifier. Ordering is according to Tab. C.



Table C. List of all visual encoders used with their characteristics.

id model variant arch class dim resolution params (M) train dataset

1 CLIP ViT-B/16 Transformer CVL 512 224 88 WIT
2 CLIP ViT-B/32 Transformer CVL 512 224 86 WIT
3 CLIP ViT-L/14 Transformer CVL 768 224 304 WIT
4 CLIP ViT-L/14@336 Transformer CVL 768 336 304 WIT
5 CLIP RN50 CNN CVL 1024 224 38 WIT
6 CLIP RN101 CNN CVL 512 224 56 WIT
7 CLIP RN50×4 CNN CVL 640 288 87 WIT
8 CLIP RN50×16 CNN CVL 768 384 167 WIT
9 CLIP RN50×64 CNN CVL 1024 448 420 WIT

10 OpenCLIP ViT-B/16 Transformer CVL 512 224 86 LAION-2B
11 OpenCLIP ViT-B/32 Transformer CVL 512 224 87 LAION-2B
12 OpenCLIP ViT-L/14 Transformer CVL 768 224 303 LAION-2B
13 OpenCLIP ViT-H/14 Transformer CVL 1024 224 632 LAION-2B
14 OpenCLIP ViT-g/14 Transformer CVL 1024 224 1012 LAION-2B
15 OpenCLIP ViT-B/16 Transformer CVL 512 224 86 DataComp-1B
16 OpenCLIP ViT-B/32 Transformer CVL 512 256 87 DataComp-1B
17 OpenCLIP ViT-L/14 Transformer CVL 768 224 303 DataComp-1B
18 OpenCLIP ConvNeXt-B CNN CVL 640 256 88 LAION-2B
19 OpenCLIP ConvNeXt-L CNN CVL 768 320 199 LAION-2B
20 OpenCLIP ConvNeXt-XXL CNN CVL 1024 256 846 LAION-2B
21 SigLIP ViT-B/16 Transformer CVL 768 256 93 WebLI
22 SigLIP ViT-L/16 Transformer CVL 1024 256 316 WebLI
23 SigLIP2 ViT-B/16 Transformer CVL 768 256 93 WebLI
24 SigLIP2 ViT-L/16 Transformer CVL 1024 256 316 WebLI

25 ViT ViT-B/16 Transformer SUP 768 224 86 ImageNet-21k
26 ViT ViT-B/32 Transformer SUP 768 224 86 ImageNet-21k
27 ViT ViT-L/16 Transformer SUP 1024 224 307 ImageNet-21k
28 ViT ViT-L/32 Transformer SUP 1024 224 307 ImageNet-21k
29 ViT ViT-H/14 Transformer SUP 1280 224 632 ImageNet-21k
30 ResNet RN50 CNN SUP 2048 224 26 ImageNet-1k
31 ResNet RN101 CNN SUP 2048 224 45 ImageNet-1k
32 ConvNeXt ConvNeXt-T CNN SUP 768 384 50 ImageNet-21k
33 ConvNeXt ConvNeXt-B CNN SUP 1024 384 89 ImageNet-21k
34 ConvNeXt ConvNeXt-L CNN SUP 1536 384 198 ImageNet-21k
35 ConvNeXt ConvNeXt-XL CNN SUP 2048 384 350 ImageNet-21k

36 DINO ViT-S/16 Transformer SSL 384 224 21 ImageNet-1k
37 DINO ViT-S/8 Transformer SSL 384 224 21 ImageNet-1k
38 DINO ViT-B/16 Transformer SSL 768 224 85 ImageNet-1k
39 DINO ViT-B/8 Transformer SSL 768 224 85 ImageNet-1k
40 DINO RN50 CNN SSL 2048 224 23 ImageNet-1k
41 DINOv2 ViT-S/14 reg Transformer SSL 384 224 21 LVD-142M
42 DINOv2 ViT-B/14 reg Transformer SSL 768 224 86 LVD-142M
43 DINOv2 ViT-L/14 reg Transformer SSL 1024 224 300 LVD-142M
44 DINOv2 ViT-g/14 reg Transformer SSL 1536 224 1100 LVD-142M
45 MoCo v3 ViT-S Transformer SSL 384 224 22 ImageNet-1k
46 MoCo v3 ViT-B Transformer SSL 768 224 86 ImageNet-1k
47 MoCo v3 RN50 CNN SSL 2048 224 26 ImageNet-1k
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