Appendix for AMD

A. Trajectory Augmentation

Data augmentation techniques have been widely adopted
to address imbalanced data to enhance model generaliza-
tion. Inspired by related research [2], this study designs four
novel augmentation methods specifically for short-term tra-
jectories: (1) Simplify, (2) Shift, (3) Mask, and (4) Subset.
These methods aim to improve the model’s performance in
handling real-world uncertainties in trajectory prediction.
Each augmentation type generates varied transformations,
enabling the model to better adapt to different trajectory pat-
terns during training and enhance prediction accuracy for
long-tail trajectories.

(1) Simplify. Trajectory simplification is achieved by
removing redundant nodes in a trajectory while preserving
key shape-defining points. This process helps models fo-
cus on the primary trajectory patterns. We use the Ramer-
Douglas-Peucker (RDP) algorithm for trajectory simplifi-
cation. The RDP algorithm iteratively removes points be-
tween two endpoints while retaining the endpoints of the
trajectory. Given a trajectory T = {t1,to,...,t,}, where
t; = (x;,y;) represents the i-th point in the trajectory, the
RDP algorithm yields a simplified trajectory 7”.
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where %, is the point that satisfies the maximum distance
condition.

(2) Shift. In long-tail trajectories, data may undergo
small random shifts due to external factors, increasing tra-
jectory diversity. To simulate this variation, the shift method
applies a random displacement to each point in the trajec-
tory, helping the model adapt to such perturbations. For a
given trajectory 7', the shift method adds a random displace-
ment to all points over time.

T ={ti + A ta + A, ... t, + A} )

where A = (d,,0,) is a random displacement vector,
0,0y ~ u(—¢, €), denotes a uniform distribution in the in-
terval [—e, €].

(3) Mask. The masking method randomly discards parts
of trajectory data to simulate missing data caused by sensor

failures or other factors. This method enhances the model’s
robustness in handling trajectories with partial data loss.

T — tia
0,
where, the masking indicator mask(7) follows a Bernoulli

distribution B(p), with p representing the probability of re-
taining each point.
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(4) Subset. Some long trajectories may contain only
partial temporal information, making it challenging for
the model to learn complete temporal dependencies dur-
ing training. The subset selection method randomly selects
a consecutive subsequence from the trajectory, simulating
scenarios with incomplete or unevenly sampled temporal
information. For a given trajectory 7T, the selected subset
T’ is defined as:

TI = [ti7 e 7ti+'y*n} (4)
where -y is the subset ratio, representing the proportion of
the trajectory retained in the subset.

B. Momentum Contrastive Learning

In long-tail prediction tasks, rare or uncommon patterns of-
ten lead to difficulty in identifying meaningful samples, po-
tentially resulting in these samples being overlooked. To
mitigate the error induced by such rare samples in long-tail
judgment, we propose an improved Dynamic Momentum
and Top-K Hard Negative Mining method, termed MoCo-
DK. This method dynamically adjusts the momentum coef-
ficient and employs a Top-K Hard Negative Mining mech-
anism to apply additional focus on long-tail samples within
the contrastive learning framework.

In the original MoCo approach [3], the momentum en-
coder parameter is updated based on a fixed momentum co-
efficient, which limits the model’s adaptability across dif-
ferent training stages. Therefore, we introduce a dynamic
momentum adjustment mechanism, where the momentum
coefficient m changes based on the current training progress
t and total training duration 7', adapting to the feature learn-



ing needs at different stages.
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where m., m,,, m; represent the momentum coefficients
for early, mid, and late stages of training, respectively.

In each update, the parameters 6, of the momentum en-
coder are updated based on the parameter 6, of the query
encoder and the dynamic momentum coefficient m.

To encourage the model focus on hard-to-distinguish neg-
ative samples, we introduce a Top-K Hard Negative Min-
ing mechanism. This mechanism identifies the most similar
negative samples within the negative sample set, enhanc-
ing the model’s capacity to discriminate among challenging
long-tail samples. Specifically, the similarity I, between
the query sample and its corresponding positive sample is
calculated, along with the similarity [,,.4 between the query
sample and each negative samples. The Top-K samples with
the highest similarity to the query sample are then selected
from the negative sample set and designated as hard nega-
tive samples:

lpos = Szm(Q7 k+)7
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where sim/() denotes the similarity function, ¢ is the query
encoding, and k* and k™ represent positive and negative
encodings, respectively. K is the number of hard nega-
tive samples selected, and T'opK refers to selecting the top
K samples with the highest similarity to the query sample

among the negative samples.

The final contrastive loss is constructed by comparing
the positive sample with the Top-K hard negative samples,
calculated as follows:

exp(sim(q, kT)/7)
exp(sim(q, k+) /) + 321, exp(sim(q, k) /7)

Limoco = —log ®)
where 7 is a temperature parameter. This design allows the
model to focus on challenging long-tail features.

C. Scene Interaction Encoder

In the Scene Interaction Encoder, we propose a latent vari-
able mechanism to model the multimodal characteristics
of trajectory prediction. By introducing stochasticity into
the target agent’s representation, this mechanism generates
multiple plausible future trajectories from a single input
scene. Leveraging latent variability, it effectively captures
the inherent uncertainty in agent behavior, proving espe-
cially valuable for predicting rare yet critical patterns in

long-tail scenarios. The mechanism takes the target agent’s
encoded state 7' € R BXD a5 input, where B denotes the
batch size and D represents the feature dimension. This
state is first refined through self-attention operations and
subsequently transformed into a latent representation H e,
via a linear projection function fiyen:

Higent = fraent(T') € REx (D K) 9)

Here, K denotes the number of trajectory modes, facili-
tating the encoding of diverse potential outcomes. Subse-
quently, Hiene is reshaped and combined with the target
context 1" to produce a multimodal feature representation
Hmode c RKXBXD'

Hmode = Hlatent +T (10)

This approach ensures that H 4 encompasses K distinct
trajectory modes, each reflecting a unique variation induced
by the latent variable mechanism.

D. Experiments
D.1. Datasets

To evaluate the performance of our proposed model across
diverse scenarios, we conducted extensive experiments on
the nuScenes and ETH/UCY datasets, which encompass
traffic data from various real-world scenes. Below is a brief
overview of the two datasets:

(1) nuScenes: The nuScenes [1] dataset is a large-scale
autonomous driving dataset comprising 1000 scenes, span-
ning a variety of real-world driving scenarios and enriched
with high-definition maps for comprehensive contextual in-
formation. It provides 2 seconds of historical trajectory data
and 6 seconds of future trajectory data for all agents (vehi-
cles and pedestrians).

(2) ETH/UCY: The ETH/UCY dataset is a pedestrian
dataset consisting of 5 distinct scenes across 56 segments.
The ETH [5] dataset includes two scenes, ETH and HO-
TEL, with 750 pedestrians, while the UCY [4] dataset com-
prises three scenes—UNIV, ZARA1, and ZARA2—with
786 pedestrians. Sampled at a frequency of 2.5 Hz (i.e.,
one data point every 0.4 seconds), this dataset provides 3.2
seconds (8 timesteps) of historical trajectory data and 4.8
seconds (12 timesteps) of future trajectory data.

D.2. Metrics

To assess the trajectory prediction performance of our pro-
posed model, we adopt several widely used metrics: Av-
erage Displacement Error (ADE), Final Displacement Er-
ror (FDE), and Miss Rate (MR). For long-tail samples,
we employ minimum ADE (minADE) and minimum FDE
(minFDE) to better evaluate performance on challenging
cases. Additionally, for overall multi-modal prediction, we



Prediction Horizon (s) Top 1% Top 2% Top 3% Top 4% Top 5% Rest All
1 0.13/0.11  0.16/0.13  0.15/0.13  0.14/0.11  0.13/0.11  0.14/0.12  0.14/0.12
2 0.20/0.20  0.24/0.24  0.24/0.23  0.22/0.21  0.21/0.20  0.23/0.22  0.21/0.21
3 0.30/0.32  0.33/0.34  0.33/0.34 0.31/0.32  0.30/0.31 0.32/0.34  0.32/0.34
4 0.40/0.44  0.44/0.48 0.43/0.48 0.41/0.45 0.40/045 0.42/0.49 0.42/0.48
5 0.52/0.57  0.56/0.63  0.55/0.65 0.53/0.60  0.52/0.60 0.54/0.66  0.54/0.65
6 0.65/0.72  0.72/0.83  0.70/0.87  0.68/0.87  0.67/0.86  0.69/0.88  0.69/0.88

Table 1. Prediction errors (minADE/minFDE) at different prediction horizons, divided by risk metric for the seven test samples. The top

1%-5% refer to the subset of samples with the highest risk.

Prediction Horizon (s)  Rapid Acceleration  Rapid Deceleration ~ Sharp Lane Change  Sharp Turn Normal All
1 0.19/0.16 0.23/0.18 0.26/0.24 0.21/0.19 0.12/0.09  0.14/0.12
2 0.29/0.27 0.34/0.31 0.39/0.40 0.32/0.34  0.19/0.18  0.21/0.21
3 0.39/0.40 0.46/0.46 0.52/0.56 0.44/0.51 0.27/0.29  0.32/0.34
4 0.51/0.57 0.57/0.63 0.68/0.74 0.58/0.71 0.36/0.42  0.42/0.49
5 0.64/0.75 0.72/0.81 0.87/0.97 0.74/0.94  0.48/0.58  0.54/0.65
6 0.80/1.01 0.90/1.08 1.10/1.41 0.94/1.28 0.61/0.78  0.69/0.88

Table 2. Prediction errors (minADE/minFDE) at different prediction horizons, divided by vehicle state for the six test samples.

use minADE;, and minFDEj to measure the accuracy of
the top- K predicted trajectories. Below, we provide the de-
tailed definitions and formulas for these metrics.

¢ Average Displacement Error (ADE): ADE measures
the average Euclidean distance between the predicted tra-
jectory and the ground-truth trajectory over all time steps.
For a predicted trajectory Yprea = [y1,%2,...,yr] and
ground-truth trajectory Yo = [Yo1, Yet2; - - - » Y1), Where
T is the prediction horizon, ADE is computed as:

T
1
ADE = =% ([t = g, II2 (11)
t=1
Here, || - ||2 denotes the Lo norm (Euclidean distance).

* Final Displacement Error (FDE): FDE measures the
Euclidean distance between the predicted endpoint and
the ground-truth endpoint at the final time step 7"

FDE = [lyr — et ||2 (12)

* Miss Rate (MR): MR evaluates the proportion of predic-
tions where the final displacement exceeds a predefined
threshold (e.g., 2 meters). For N samples, it is defined as:

N
1 ;
MR = v ;[(HyT — Ygu [|2 > threshold)  (13)

where I(-) is an indicator function (1 if true, O otherwise),
and y* and Ygui, are the predicted and ground-truth end-
points for sample i.

¢ Top-K Minimum ADE (minADE}): minADE extends
minADE to evaluate the best performance among the top-
K predicted trajectories, typically used for multi-modal

models. It is equivalent to minADE when considering K
candidates:

T
. : 1 k
minADE;, = N ;_1 95 — Y, |l (14)

e Top-K Minimum FDE (minFDE.): minFDE,, assesses
the best FDE among the top-K predicted trajectories:

inFDE,. — i k _ 15
minFDEy, k:r{}}_riKllyT Yeur 2 15)

D.3. Implementation Details

Our experimental hyperparameters are as follows: the tra-
jectory simplification threshold is 0.5, translation distance
0.1, trajectory mask 0.8, and subset ratio 0.6. The encoder
embedding dimension is 32, with three Transformer En-
coder layers, two GAT layers, and four attention heads in
the scene interaction module. The model is trained with
the Adam optimizer, and final loss weights v, 2, A1, and
Ao are set to 1, 0.5, 1, and 0.1, respectively. In MoCo-DT,
Me, Mm, My are set to 0.95, 0.99, and 0.999, respectively.
The number of clusters in K-means is set to 5.

D.4. Prediction Horizon Impact

To evaluate the proposed model’s performance across dif-
ferent prediction horizons, we conducted experiments on
the nuScenes dataset, analyzing the impact of prediction du-
rations from 1s to 6s on trajectory prediction accuracy. The
evaluation metrics were minADE and minFDE (as defined
earlier), with test samples categorized by risk levels and ve-
hicle states to assess the model’s effectiveness in long-tail
trajectory prediction.



Scenarios Others (Chen et al. 2024)

Our AMD

Model B w/o TA Model E w/o DCL

(a)

(b)

(©)

(d)

(e

I Target Vehicle [EE Neighbor Vehicles [ Drivable Area [ Crosswalk — Ground Truth

—=o Prediction

Figure 1. Qualitative results of long-tail trajectory predictions, covering various high-curvature turning trajectories. The red lines show the
most probable trajectory, while the light red lines show the predicted multimodal trajectories.

Table | shows that minADE and minFDE increase as the
prediction horizon extends from 1 to 6 seconds, reflecting
accumulated uncertainty. Yet, the model maintains consis-
tency across risk levels; at 6 seconds, the top 1% riskiest
samples yield minADE/minFDE of 0.65/0.72, close to the
overall average of 0.69/0.88, highlighting its robust perfor-
mance in high-risk long-tail scenarios.

Table 2 further illustrates the model’s strengths across
vehicle states like rapid acceleration, deceleration, sharp
turns, and normal driving. It achieves lower errors in nor-
mal conditions (0.61/0.78 at 6s) while remaining effective
in challenging maneuvers like sharp turn (0.94/1.28 at 6s),
demonstrating cross-state stability and superior adaptability
compared to models overfitting to typical patterns.
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Figure 2. Qualitative results of long-tail trajectory predictions, covering various acceleration and deceleration scenarios. The red lines
show the most probable trajectory, while the light red lines show the predicted multimodal trajectories.

D.5. Qualitative Results

To further demonstrate the accuracy of our AMD model in
predicting long-tail trajectories, we visualize the prediction
results of AMD and its variants on various high-curvature
turning trajectories in Figure 1. As illustrated, the AMD
model consistently outperforms other variants in scenarios
characterized by large turning angles and high trajectory
uncertainty, accurately capturing the true vehicle dynam-
ics. Additionally, Figure 2 visualizes vehicle acceleration
and deceleration scenarios to evaluate the model’s effec-
tiveness under varying speed conditions. The results indi-
cate that AMD effectively captures trajectory fluctuations
caused by velocity changes, mitigating prediction latency
or overshooting issues commonly observed in the variant

models. These observations confirm that our AMD model
achieves superior generalization and robustness in long-
tail trajectory predictions, exhibiting strong adaptability to
complex real-world driving scenarios.
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