SILO: Solving Inverse Problems with Latent Operators

Supplementary Material

A. Flaws of bi-domain LDM restoration

The MMSE denoiser employed in the diffusion process of
LDMs is designed to denoise latents, not images, while the
observation y resides in the measurement space. Thus, the
approximation of DPS,

1 .
Vo, Inp(yle) & ——Va lly = A(@) 5, (18)
Y
is no longer applicable. As mentioned in Sec. 4, one possi-
ble solution is to decode the latents to the pixel (measure-
ment) space during the restoration process, allowing, for ex-
ample, the use of

Ve mplyla) & - 5 Vely -~ ARG (19)
Y

We categorize such solutions as part of the “bi-domain”
family, as they compute gradients in both the pixel and la-
tent domains. To the best of our knowledge, all existing
methods leveraging LDMs for inverse problems (apart from
SILO) fall within this category. In this section, we demon-
strate the underlying flaws in solutions belonging to this
family.

During the training process, the decoder is exposed only
to clean latents, z5. Moreover, we do not require that its
Jacobian be informative or well-behaved. This leads to two
main problems when using the decoder during restoration.
First, the decoder is applied to out-of-distribution (OOD)
latents compared to its training data, as the latents in the
restoration process, 26, are MMSE denoised, thus com-
ing from a different distribution. Second, differentiating
through the decoder transforms the score-likelihood gradi-
ent from the pixel to the latent space, introducing a pos-
sibly uninformative Jacobian to the backpropagation pro-
cess. These two problems are tightly related to each other.
An OOD latent leads to an unpredictable Jacobian, further
destabilizing the differentiation process of the likelihood.

To demonstrate these problems, we focus on LDPS [45]
and PSLD [39] as representatives of the bi-domain family.
LDPS (Eq. (9)) is the starting ground for all other methods
in this family, and PSLD (Eq. (11)) is an extension of it.
As we see in Figs. 14, 15 and 17 to 21, the reconstructions
of LDPS and its derivatives often suffer from the presence
of “blob” artifacts and noise patterns. To investigate this
matter, we record the gradients

Vzlly — AD(2)) Il (20)

during the restoration process of LDPS and PSLD. Note the
subtle difference between Eq. (20) and Eq. (19); the two dif-

fer only in the Jacobian of the denoiser, which is irrelevant
to our analysis as it is independent of the decoder.

In Fig. 9, we see that from the early stages of the restora-
tion process, these gradients contain a patch that causes the
latent to change in a way that does not correlate with the
measurement. This effect prevails throughout the diffusion
process, leading to a closely-related defect in the resulting
image. Qualitatively, from ¢ ~ 500 onward, the gradients
exhibit a noise pattern that dominates the signal, leading to
a similar noise pattern in the reconstructed image. This be-
havior is inherent to the use of the decoder in the way prac-
ticed by LDPS and PSLD. Adding projections and a regular-
ization could improve the restoration, but only to some ex-
tent. For example, PSLD attempts to mitigate this by guid-
ing the latents to areas the encoder-decoder handles better,
yet similar artifacts are still presented as seen in Fig. 9. An-
other example is ReSample, which performs likelihood op-
timization in pixel space followed by an encoding step in
parts of the restoration process to avoid those blob artifacts
(Appendix B of [45]).

In summary, differentiating through the decoder might
corrupt the information required for faithful reconstruction.
This motivates us to avoid using the decoder altogether dur-
ing the restoration process.

B. Discussion on plug-and-play methods

As explained in Section | and in the literature [37, 53, 58,
61], plug-and-play (P&P) methods treat separately the like-
lihood term from the prior term. This separation results in
two appealing properties: (i) A P&P method can leverage
new and improved priors with the same likelihood term. (ii)
A P&P method can solve different degradations by adapt-
ing appropriate likelihood terms. Notably, a method is not
bound to use an analytic prior or likelihood term and may
learn one or both of them. For example, RED [37] demon-
strate restoration with both hand-crafted priors and learned
ones. Moreover, LGD [47] and DEFT [8] both demonstrate
learned likelihood terms.

Following the above discussion, it is natural to call SILO
a P&P method. Specifically, we have demonstrated in the
main paper how SILO can use different priors with no ad-
ditional training of the degradation operator, as expected
from a P&P method. The unique aspect of SILO is the fact
that we adapt the likelihood term to the space of the prior.
This stand in contrast with other P&P methods that translate
back-and-forth between the likelihood and prior spaces.

It is important to note the fundamental differences be-
tween end-to-end (E2E) supervised methods and P&P

t_imestep

l e
[- [

Figure 9. The decoder’s artifacts. We present the likelihood’s gradient through the decoder (Eq. (20)) at different timesteps ¢. Each
gradient is presented as four single-channel images, clipped to [—3, 3] and scaled by 102 for better visualization. At the bottom, we present
the resulting image of the restoration process. The decoder’s Jacobian introduces “blob” artifacts and noise patterns that are present in the

final restorations.

methods, and SILO in particular. E2E methods has sev-
eral defining aspects: (i) An E2E method trains a model to
solve a particular task. (ii) The prior of an E2E method is
embedded in the model itself, coupled to the task at hand.
(iii) Such methods tend to train large models for extended
periods of time. All of those aspects stand in contrast with
P&P methods which are adaptable to different priors and
tasks. Crucially, while E2E methods learn to restore im-
ages, SILO only learns to predict how likely a given image
is the source of the measurements in hand. In other words,
E2E methods inherently solves a generative task while the
learned part in SILO is discriminative in nature.

C. Additional ablations

C.1. Diverse reconstructions using SILO

Similar to DPS [5], SILO is a stochastic solver of inverse
problems. To demonstrate the effect of this stochasticity, we
present in Fig. 10 reconstruction examples using SILO for
the box inpainting task. We present multiple reconstruction
per input, each is the result of a different random seed. We
see large variability in the reconstructions, while keeping
the consistency intact.

Figure 10. Diverse reconstructions. We present two measurements from FFHQ corrupted by a box mask at the top. Below each
measurement are several reconstructions using SILO. The reconstructions’ hyperparameters are identical over all the images except for the
random seed used. We see great variability in the details reconstructed inside the missing box, all while being consistent outside of it.

C.2. Priors and text conditioning

Since the diffusion priors are text-conditioned, we explore
the relationship between an informative prompt, which in-
cludes details about the clean image, and the method’s abil-
ity to reconstruct it as a sharp, clean image. In Tab. 2, we
compare the quality of reconstructions generated using RV-
v5.1 and SD-v1.5. For each model, we use Algorithm 1
with varying prompts and classifier-free guidance (CFG)
[19]. We test three types of prompts: a null prompt (an
empty string), a generic prompt (“A high quality photo of
a face”), and a set of high-quality (HQ) prompts, specific
to each image. The HQ prompts are generated using Qwen
[55], a vision-language model. Looking at Tab. 2, we ob-
serve that better diffusion models, using detailed text condi-
tions and sampling with CFG, can improve the reconstruc-
tions’ perceptual quality.

C.3. Generalization capability

Following a reviewer’s suggestion, we include a cross-
domain generalization ablation (settings of inpainting in
Tab. 6). The purpose of this ablation is to see if the trained
operator is limited to its training data or can generalize to
the same degradation on a different dataset. Note that the
results in Tab. 8 are made using an operator that is trained
on LSDIR, but tested on COCO. In the results of Tab. 3, we
observe that the operator can generalize for the degradation
of center box inpainting. Predictably, the best results are

Model CFG Prompt PSNR LPIPS FID KID
HQ 2578 0219 2443 227

RV 4 generic 26.06 0.222 26.21 3.96
| generic 26.28 0.226 27.10 5.23

null 2635 0.230 27.63 5.83

4 HQ 26.08 0.252 29.29 7.65

SD generic 26.05 0.246 29.24 7.03

generic 26.13 0.253 30.71 8.47
null 26.18 0.263 3255 10.3

Table 2. Comparison of using SILO on FFHQ dataset, for SR X8,
when different models, CFG levels, and text-conditions are used.

achieved whenever an operator is tested on images that are
more closely related to its training data (e.g. by comparing
rows 1,3 to each other, and rows 2,4 to each other). How-
ever, when testing on FFHQ, the operator that is trained on
general images (LSDIR), has a comparable performance to
that of an operator trained only on face images (FFHQ).
This phenomenon still manifests when testing on COCO
with operators that are trained on FFHQ or LSDIR, but to
a lesser extent. This result is not surprising, as training on
face images is more domain-specific; thus, the operator is
not incentivized to generalize, unlike when learning with
general images.

Test Train PSNR LPIPS FID KID
FFHQ 22.23 0.151 21.04 432

FFHQ LSDIR 2195 0.151 21.78 4.46
FFHQ 1796 0.249 61.79 11.79
LSDIR 18.30 0.221 45.59 2.15

COCO

Table 3. Ablation of the generalization ability of the operator to
different datasets, Appendix C.3

D. Implementation details

D.1. Full algorithm

Our goal is to be able to generate restorations in a plug-and-
play manner (for example, like in DPS) in the latent space
while maintaining a simple and elegant sampling algorithm.
Specifically, we wanted to migrate the entire restoration part
to the latent space. In Algorithm 1, we present an abbrevi-
ated version of the full algorithm, which is given in Algo-
rithm 2. Notice how the algorithm is essentially DPS, but
is performed completely in the latent space. This comes in
contrast to the naive adaptation, LDPS (Eq. (9)). To the best
of our knowledge, no other plug-and-play method behaves
in such way.

Algorithm 2: SILO: Reconstruction Algorithm
Data: measurement y, encoder £, decoder D, latent
diffusion model €y, trained degradation
operator Hy, text condition C, consistency
scale 7, noise schedule {3;}7_,
Result: A reconstruction &

1 2z~ N(O,I),
2 Encoding: w = clamp(&(y),-4,4);
3fort=T1t01do
4 €+ ep(24,t,C);
5 26(—\/%(@—\/1—6”6);
6 | n~N(0,I);
7 Zi_q
e+ R A
8 | o1 2l — 0V lw — Ho(Z0)]l2

9 Decoding: & = D(zp);
10 return z;

D.2. General details

The degradations described in Sec. 5.2 are done using the
original code base* of DPS [5]. For JPEG, we use the pub-
licly available implementation from kornia”. For the diffu-

4github.com/DPS2022/diffusion-posterior-sampling
Skornia.readthedocs.io/en/latest/enhance.html#kornia.enhance.
jpeg_codec_differentiable

sion models, we use Stable Diffusion v1.5° (denoted as SD
or SD-v1.5) and Realistic Vision v5.17 (denoted as RV or
Rv-v5.1). In order to generate the HQ captions from Ap-
pendix C.2, we use Qwen2-VL-7B-Instruct ®.

D.3. Metrics

The metrics we use are divided into 2 groups: distortion and
perception metrics. All metrics are calculated using torch-
metrics (lightning.ai/docs/torchmetrics).

Perception-Distortion. The perception-distortion trade-
off [3, 15] states that there is an inherent tension be-
tween perceptual quality (how natural a reconstruction ap-
pears) and distortion (how similar a reconstruction is to the
source). Therefore, it is essential to include both types of
metrics in evaluations. As our goal is to achieve recon-
structions with high perceptual quality, we sacrifice some
distortion, particularly in terms of PSNR. As PSNR favors
smooth and blurry results, it penalizes plausible and sharp
restorations, such as posterior samples. Specifically, MSE-
based restoration methods [4, 7, 12, 16, 17, 27, 52] indeed
increase data fidelity but lack visual quality. Since LPIPS
is considered a distortion metric by the definitions of Blau
and Michaeli [3], SILO approaches the tradeoff bounds
through SOTA LPIPS, FID, and KID metrics, advancing the
FID/KID-LPIPS Pareto-frontier.

Distortion Metrics. Distortion metrics are calculated be-
tween two images. PSNR evaluates how close a reconstruc-
tion, Z, is to the original image, z, in a pixel-wise manner,

2
2) 1)

PSNR(.%‘, .f) = 1010g10 (n’]ean(”{ﬂ—i’”%)

Since the images can have values in the range [—1, 1], 2 is
used as the data range to calculate the PSNR. The denomi-
nator transfers ||z — 2|3 to a per-pixel error via the ‘mean’
operation. LPIPS measures the perceptual similarity be-
tween two images and can be computed using different neu-
ral networks. As recommended by [60], we use AlexNet
[25] for evaluation, as it is preferred over VGG [43]. Un-
like prior work, which primarily reports LPIPS-VGG, we
present LPIPS-Alex in Sec. 5.3 and include both LPIPS-
Alex and LPIPS-VGG in Appendix G for completeness.

Perception Metrics. Perception metrics assess the diver-
gence between the distribution of real images, p,, and the
distribution of reconstructed images, p;. When these dis-
tributions are close, it indicates that our algorithm approx-
imately samples from the real image distribution. The per-
ception measures we provide are Fréchet Inception Distance

6huggingface.co/botp/stable-diffusion-v1-5
"huggingface.co/stablediffusionapi/realistic-vision-v51
8https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct

(FID) [18], and Kernel Inception Distance (KID) [2] mul-
tiplied by a factor of 103,

D.4. Hyperparameters of results in paper

In this subsection, we detail the exact hyperparameters used

for all results presented in the paper.

* seed: The random seed to the process is fixed to 1,000
throughout the paper unless otherwise mentioned.

* Model: Either SD or RV, as defined in Appendix D.

¢ idx: The index of the image from the given dataset, when
the count starts at 0.

* prompt: If the dataset is FFHQ, then the options are null,
general and HQ. They are defined in Sec. 5.3 and the HQ
prompts are given in the supplementary material. If the
dataset is COCO, we only use a null prompt. One can use
“A high quality photo” as a general prompt, but we did
not experiment with it.

* CFG: Classifier-free guidance [19] allows for reconstruc-
tion that adhere more to the given prompt. We use either
1 (equal to not performing CFG) or 4.

* A : The degradation operator, as defined in Sec. 5.2. In
the appendix, we use the following abbreviations: GB
for Gaussian blur, IP for inpaining, JP for JPEG, SR8 for
Super-resolution x8, and SR4 for Super-resolution x4.

* 0y : The amount of noise added to create the measure-
ments was either 0.01 or 0.03 in all experiments.

* 1 : This parameter determines the scale (i.e., step size) of
the guidance term. Higher scales result in more consistent
reconstructions at the expense of perceptual quality. We
set n = 0.5 for all tasks, except for inpainting, where
n = 1 is used.

For all the results of SILO (denoted as “Ours”) in Figs. 6

and 7 we use a CFG of 1, 0, = 0.01.

E. Comparison to other methods

In this section, we describe how SILO was compared to Re-
Sample, PSLD, GML, and LDPS. SILO utilizes SD to gen-
erate reconstructions at a resolution of 512 x 512. PSLD,
GML, and LDPS natively support this resolution and dif-
fusion prior, as implemented in the PSLD GitHub reposi-
tory °. Resample use the LDM-VQ4, trained on FFHQ "’
as the diffusion prior, which generates images of size 256 x
256. Hence, to give a fair comparison to ReSample, we had
to adapt their publicly available code.

PSLD. We made no modifications to the PSLD code, ex-
cept for adapting the data-loading process to enable sam-
pling from the COCO dataset. The hyperparameters used
were identical to those provided in the official repository

9 github.com/LituRout/PSLD
10github.com/CompVis/latent-diffusion/tree/main?tab=readme-ov-
file#model-zoo

for each task. For tasks not explicitly included (JPEG and
SR x8), we applied the same hyperparameters as those used
for the SR x4 task.

GML-DPS. We used the same implementation as for
PSLD, replacing the PSLD step (Eq. (11)) with the GML
step (Eq. (10)). The hyperparameters were identical to those
used for PSLD.

LDPS. We used the same implementation as for PSLD,
except that the PSLD step (Eq. (11)) was omitted entirely.
This removes the associated computational requirements.
The hyperparameters remained the same as those used for
PSLD.

ReSample. As mentioned earlier, the reported results for
ReSample are based on 256 x 256 reconstructions, gen-
erated using a different diffusion prior than SD, which
was trained specifically on face images. To implement
ReSample-SD, we started with the publicly available Re-
Sample codebase ''. We replaced the LDM-VQ4 denoiser
with the SD one, updated the Autoencoder to match the one
used for SD (consistent with all other methods), and ad-
justed the data-loading process to handle larger images. The
hyperparameters used were identical to those in the original
codebase. We acknowledge that the results of ReSample-
SD differ from the reported results in ReSample, particu-
larly for box inpainting. This discrepancy could stem from
changes in the diffusion prior and image size, as well as
suboptimal hyperparameters (due to these changes). The
authors of the original paper were contacted to discuss the
discrepancies we encountered. We should note that recon-
struction time remains a significant factor — ReSample is
notably slower than SILO, which achieves speedups of 10 x
and 18x for SR x8 and JPEG tasks, respectively.

F. Emulating the operator

The training scheme for the degradation operator is illus-
trated in Fig. 11, and described in Sec. 4. As a reminder,
SILO does not require a specific type of network. The
only requirement is to train it using Eq. (17). To demon-
strate this, we used the network suggested in Readout Guid-
ance [32], and a simple CNN. Training procedures for both
setups are presented.

When training a Readout Guidance (RG) [32] operator
Hy, the inputs are features extracted from the denoising
network. We followed the same settings as described in
RG [32]. The learning rate was set to 2x10™%, using the
AdamW optimizer ' [31]. Training was conducted on a sin-
gle NVIDIA L40S card with a batch size of 16, for 7.5x 104

1 github.com/soominkwon/resample
12pytorch.org/docs/stable/generated/torch.optim. AdamW

Dl e {a]

Latent Space

Figure 11. Training scheme of the latent operator, Hy. In train-
ing, gradients flow from L to update the parameters of Hy. Note
that no gradients pass through the pixel space. Hy learns to mimic
the effect of the degradation operator in the latent space, allowing
us to use SILO to solve inverse problems using LDMs.

The training loss vs number of gradient steps

Training loss
—— EMALoss
—— End of Training

0.65

o o
o @
o 3

Training loss
1)
@
g

0.45

0 10000 20000 30000 40000 50000 60000 70000
Gradient steps

Figure 12. Training loss when learning a RG Hp to mimic the
Super-resolution x 8 operator.

steps, taking approximately 14 hours. Training loss vs. the
number of optimization steps for the Super-resolution x8
operator is shown in Fig. 12. We did not optimize the train-
ing process at all.

The CNN-based Hj takes a latent z as input and pro-
duces w as output. The training scheme for the CNN is
depicted in Fig. 11. The learning rate was set to 1073, us-
ing the AdamW optimizer. Training was conducted on a
single NVIDIA L40S card with a batch size of 16, for 10°
steps, requiring approximately 14 hours. Training loss vs.
the number of optimization steps for the Super-resolution
x 8 operator is shown in Fig. 13. We did not optimize the
training process or network architecture at all.

050 The training loss vs number of gradient steps
v

Training loss
—— EMALoss

—— End of Training

0.40

Training loss
I5)
w
&

0.30

0 20000 40000 60000 80000
Gradient steps

100000

Figure 13. Training loss when learning a CNN Hy to mimic the
Super-resolution x 8 operator.

G. Additional results

We reprint the results in Figs. 2, 6 and 7 in Tabs. 4 to 8,
including PSNR and LPIPS-VGG for completeness. In
Figs. 14, 15 and 17 to 21, we provide additional recon-
structions examples of SILO, ReSample, PSLD, GML, and
LDPS.

Additionally, following a reviewer’s request, we added
results of random box inpainting to this section. For this
degradation, the operator gets the inpainting mask as a con-
dition (see published code). The results in Tab. 9 and Fig. 16
were obtained for the same settings of inpainting as in
Tab. 6.

Method Time [sec] PSNR LPIPS-A LPIPS-V FID KID

Ours (RV) 138 25.52 ~ 0.203 0.326 2548 4.21

Ours (SD) 133 2540 @ 0.212 0.341 2730 6.02

ReSample 2438 25.69 0.456 0.493 39.71 20.17
PSLD cannot compute for nonlinear .4

GML-DPS 402 27.60 0.268 0.373 33.69 7.54

LDPS 412 24.53 0.373 0445 5321 17.71

Table 4. Comparison of inverse problem solvers using latent dif-
fusion on the FFHQ dataset. In this table, the time values are for
the JPEG decompression task.

Method PSNR LPIPS-A LPIPS-V FID KID
Ours (RV) 25.27 | 0.252 0.357 30.28 6.04
Ours (SD) 25.21 0.279 0.377 3277 8.00
ReSample 16.18 0.724 0.740 235.8 253.1
PSLD 2437 0.359 0493 61.99 3323
GML-DPS 26.19 0.354 0425 41.06 13.69
LDPS 26.20 0.359 0.423 39.61 12.80

Table 5. Comparison of inverse problem solvers using LDMs on
the FFHQ dataset, for SR x8 with o, = 0.03.

https://github.com/ronraphaeli/SILO/blob/main/dhf/aggregation_network.py#L304

Super-Resolution x8 Inpainting

Method Time [sec] PSNR LPIPS-A LPIPS-V FID KID PSNR LPIPS-A LPIPS-V FID KID

Ours (RV) 149 26.28 = 0.226 0.327 27.10 523 2251 0.139 0.239 1898 1.80
Ours (SD) 148 26.13 = 0.253 0.344 30.71 847 2223 0.151 0.258 21.04 432
ReSample 1418 22.80 0.575 0.603 131.75 118.57 1691 0.273 0.359 146.08 119.34

PSLD 390 25.08 0.320 0.419 41.58 1490 20.58 0.357 0.445 50.84 17.23
GML-DPS 389 27.01 0.327 0.399 3871 1299 20.64 0.356 0.443 49.89 16.54
LDPS 331 26.89 0.343 0.404 3850 1294 20.58 0.368 0.440 49.56 16.02

Table 6. Comparison of inverse problem solvers using latent diffusion on the FFHQ dataset.

Gaussian blur Super-Resolution x4

Method Time [sec] PSNR LPIPS-A LPIPS-V FID KID PSNR LPIPS-A LPIPS-V FID KID
Ours (RV) 149 26.70 | 0.222 0311 2834 821 27.03 0.182 0291 23.82 5.10
Ours (SD) 148 26.55 = 0.236 0.327 3033 9.68 2695 0.200 0306 26.51 7.34
ReSample 1418 2792 0.253 0411 29.61 10.74 24.62 0.433 0.504 45.02 25.50

PSLD 390 28.63 0.288 0.372 3844 1223 2823 0.249 0.355 29.63 10.11
GML-DPS 389 28.74 0.309 0.359 42.68 16.58 [29.34 0.247 0.335 30.71 9.05
LDPS 331 28.00 0.327 0.378 4738 19.95 29.06 0.281 0362 3444 11.69

Table 7. Comparison of inverse problem solvers using latent diffusion on the FFHQ dataset.

Method PSNR LPIPS-A LPIPS-V FID KID
Ours (RV) | 18.51 0.214 0.286 48.96 3.74
Ours (SD) 1830 0.221 0.302 45.59 2.15
ReSample 16.53 0.297 0.368 104.37 54.16

PSLD 18.24 0.454 0.513 90.38 24.40
GML-DPS 1825 0.453 0.513 88.16 21.99
LDPS 1826 0.474 0.513 92.67 24.98

Table 8. Comparison of inverse problem solvers using latent dif-
fusion on 1,000 images from the COCO dataset with inpainting.

Method PSNR LPIPS-A LPIPS-V FID KID
Ours (RV) | 2252 0.146 0243 1746 1.02
Ours (SD) 2198 0.165 0267 1943 234
PSLD 21.26 0.338 0.430 4395 14.38

Table 9. Comparison of inverse problem solvers using latent dif-
fusion on the FFHQ dataset, for the random box inpainting task

Ours (SD) ReSample PSLD GML LDPS

Ours (RV)

&

,A-éw

Figure 14. Box inpainting with oy, = 0.01, COCO dataset. Additional results.

T Y Ours (RV) Ours (SD) ReSample PSLD GML LDPS

Figure 15. Box inpainting with o, = 0.01, FFHQ dataset. Additional results.

T Y Ours (RV) Ours (SD) PSLD

Figure 16. Random box inpainting with o, = 0.01, FFHQ dataset.

Ours (RV) Ours (SD) ReSample

% MM \TMM

Figure 17. SRx4 with o, = 0.01, FFHQ dataset. Additional results.

Ours (RV) Ours (SD) ReSample PSLD GML
T nIRZEZ TV nREE T T R T '

" A J.{H

:--‘- ‘é.g. ‘(‘..g N
e e s

el g g)
\AAS\AJSM.A:%\AJ

Figure 18. SR x8, FFHQ dataset. Additional results.

Ours (RV) Ours (SD) ReSample

Sicompute

b

PSLD

cannot
compute
for
nonlinear

A

cannot
compute
for
nonlinear
A

Cannot §

cannot
compute
for
nonlinear

cannot
compute
for
nonlinear

cannot
compute
for
nonlinear

cannot
compute
for
nonlinear

omp

Figure 19. JPEG with o, = 0.01, FFHQ dataset. Additional results.

Ours (RV) Ours (SD) ReSample

Figure 20. Gaussian blur with o, = 0.01, FFHQ dataset. Additional results.

NS 7

Figure 21. SRx8 with o, = 0.03, FFHQ dataset. Additional results.

	Introduction
	Background
	Inverse problems
	Diffusion models
	Latent diffusion

	Diffusion for inverse problems: related work
	Pixel-space methods
	Latent-space methods

	Proposed method
	Encoding the measurement
	Score likelihood in latent space
	The latent degradation operator
	Reconstruction

	Experiments
	Metrics
	Degradations, datasets and models
	Results

	Conclusion
	Flaws of bi-domain LDM restoration
	Discussion on plug-and-play methods
	Additional ablations
	Diverse reconstructions using SILO
	Priors and text conditioning
	Generalization capability

	Implementation details
	Full algorithm
	General details
	Metrics
	Hyperparameters of results in paper

	Comparison to other methods
	Emulating the operator
	Additional results

