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1. Implementation Details

We employ Pathology Language and Image Pre-Training
(PLIP) [8] as our encoder to extract both image and text fea-
tures from the WSIs and their corresponding pathology re-
ports. As part of our ablation study, we also experiment with
QUILT-Net [9] as an alternative feature extractor. Since
our approach requires extracting both image and text em-
beddings, we are inherently constrained to vision-language
models for feature extraction.

Both PLIP and QUILT-Net are vision-language models
[1] that fine-tune a pretrained contrastive language-image
pretraining (CLIP) model [18]. PLIP is trained on Open-
Path, a dataset consisting of approximately 200,000 paired
pathology image-text pairs, curated from publicly available
sources such as medical Twitter [8]. Similarly, QUILT-
Net is trained on Quilt-1M, a dataset consisting of 1 mil-
lion pathology image and text samples, sourced from ed-
ucational histopathology videos along with other publicly
available resources [9].

We train the models to predict disease-specific survival
(DSS) [14], employing 5-fold site-stratified cross-validation
[7], a widely used approach in the literature. Model perfor-
mance is evaluated using the concordance index (C-Index)
[6], which measures how accurately the model’s predicted
risks align with actual patient survival outcomes. All mod-
els were trained for 50 epochs, utilizing visual and/or text
features extracted using the PLIP feature encoder [8]. The
training process employed a learning rate of 1 × 10−4, a
weight decay of 1× 10−5, a cosine learning rate scheduler,
and the AdamW optimizer. For MIL-based methods, dur-
ing training, 4,096 patches were randomly sampled for each
WSI. During inference, the entire WSI was processed to
generate predictions. MIL-based models were trained using
the negative log-likelihood (NLL) loss [24] with a batch size
of 1, while prototype-based models were optimized with
Cox loss [4] and a batch size of 64. For prototype-based
methods, we set the number of histological prototypes to
16, pathway prototypes to 50 and the number of diagnos-
tic prototypes is set to the average length of reports in the

training dataset.

2. Multimodal Baselines
Among the Multimodal Baselines, MOTCat [23], MCAT
[3], SurvPath [10] and MMPTrans [22] utilize transformer-
based architectures. With the exception of SurvivMIL [16],
all aforementioned models integrate histology images with
genomic data for survival prediction. In contrast, Sur-
vivMIL incorporates histology images and pathology re-
ports, making it the only multimodal baseline that integrates
text data. Additionally, all pathology-genomics baselines
utilize genomic prototypes by grouping genes into either
functional categories [3, 13, 23, 25] or biological pathways
[5, 10, 19, 22]. However, only the two MMP variants incor-
porate both histology and pathway prototypes.

3. Clinical Baselines
We conduct both univariate and multivariate Cox regression
analyses using clinical variables such as age, sex, and his-
tologic grade. The results in Table.1 highlight our method’s
performance in comparison to individual clinical variables
as well as their combined effect.

4. Attention Visualization
We visualize the histological prototypes created from the
WSI and the cross attention between the different modali-
ties [21, 22]. Each WSI is represented by a compact set of
16 histological prototypes. Figure.1.a represents a TCGA-
CRC WSI while Figure.1.b displays a heatmap showing the
spatial distribution of patches corresponding to each pro-
totype. Figure.1.d illustrates the proportion of patches as-
signed to each prototype (c), while Figure.1.c highlights
representative patches from the most significant prototypes
- those with a substantial number of assigned patches. The
histological prototypes have been annotated by a patholo-
gist to provide meaningful interpretations. Prototype 0 is
associated with normal colon crypts, and 3 captures fibrous
connective tissue. Smooth muscle is represented by proto-
types 5 and 9, whereas prototype 13 includes both fibrous
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Model BLCA LUAD KIRC STAD CRC HNSC Avg (↑)

Age 0.562± 0.064 0.485± 0.093 0.558± 0.075 0.542± 0.096 0.452± 0.153 0.490± 0.030 0.523
Sex 0.484± 0.053 0.533± 0.050 0.521± 0.051 0.554± 0.055 0.556± 0.065 0.488± 0.046 0.515
Grade 0.512± 0.011 n/a 0.731± 0.052 0.560± 0.039 n/a 0.544± 0.059 n/a
All 0.557± 0.062 0.494± 0.093 0.723± 0.044 0.583± 0.051 0.496± 0.099 0.516± 0.090 0.561
PS3 0.684± 0.026 0.662± 0.102 0.774± 0.067 0.638± 0.045 0.826± 0.101 0.627± 0.066 0.702

Table 1. Survival Prediction Using Clinical Variables: The variables include age, sex, and histologic grade, collectively referred to as ”All.”
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Figure 1. (a) A WSI for a CRC patient. (b) Prototype-based heatmap showing the closest morphological prototype for each patch in
the WSI. (c) Top three representative patches for the most significant prototypes. (d) Proportion of each prototype in the WSI. (e) Top
six histological prototypes highly attended by the pathway MYC Targets V1. (f) Top six histological prototypes highly attended by the
pathology report. (g) Top ten pathways highly attended by C15 (tumor prototype). (h) Top ten pathways highly attended by the pathology
report.

and adipose tissue. Prototype 14 corresponds specifically
to adipose tissue. Lastly, Prototype 15 represents tumor re-
gions, while 11 corresponds to tumor stroma.

We model cross-modal attention across histology, path-
ways, and text, capturing their interrelationships. We ana-
lyze histology-to-pathway and pathway-to-histology atten-
tion to link histological prototypes with relevant biologi-
cal pathways. Additionally, we model text-to-pathway and
text-to-histology interactions to understand how pathology
reports emphasize biological pathways and align with mor-
phological features in WSIs.

To analyze pathology reports, we compute the standard

deviation of cross-attention scores across all text segments
within a single report to identify key pathways and clusters
(Figures.1.h,e). Instead of focusing on individual text seg-
ments, we consider the entire report to capture the overall
diagnostic context. Standard deviation is used instead of
averaging attention scores, as it better highlights pathways
that receive selective but strong attention from certain seg-
ments while being ignored by others, preventing dilution of
meaningful signals.

For Prototype 15 (C = 15), which represents tumor re-
gions and is the most dominant prototype in the WSI, we
identify MYC Targets V1, TNFA Signaling via NF-κB,



and Inflammatory Response as key pathways consistently
emphasized by both histology-based and pathology report-
based attention (Figures 1.g,h). These pathways have been
shown to be important for prognosis [11, 12, 15]. Among
these, we visualize the highly attended histological proto-
types corresponding to MYC targets V1 and the pathology
report, noting that C15 emerges as a highly attended proto-
type in both (Figures1.e,f) This finding underscores strong
bidirectional cross attention between the three modalities.

4.1. Word Clouds
We stratified patients for TCGA-CRC into low- and high-
risk groups based on the median cutoff of their predicted
risk scores. Using cross-attention mechanisms, we iden-
tified the most highly attended text segment within each
pathology report, determined by the average attention from
all histological prototypes. To explore risk-associated tex-
tual patterns, we use the top-ranked text segment for each
patient and generated two word clouds—one representing
the high-risk group and another for the low-risk group as
shown in Fig.2. The provided word clouds categorize two-
word phrases instead of single words. The low-risk word
cloud (blue) includes terms like “margins negative” and
“lymph nodes negative,” which indicate that cancer has not
spread and are associated with a better prognosis [17]. Ad-
ditionally, phrases such as “moderately differentiated” and
“well differentiated” align well with low-risk pathology, as
tumors with these characteristics tend to be less aggres-
sive compared to poorly differentiated ones. Conversely,
the high-risk word cloud (red) contains terms that indi-
cate advanced disease and poor prognosis, such as “lymph
nodes positive,” “poorly differentiated,” “serosal involve-
ment,” and “radial margin” [20]. These terms reflect fea-
tures linked to higher recurrence risk, deeper tissue inva-
sion, and metastatic potential, making them indicators of
more aggressive colorectal cancer.

5. Kaplan-Meier Analysis
Figure.3 presents Kaplan-Meier survival curves for the pre-
dicted high-risk and low-risk groups. Patients with risk
scores above the cohort median are classified as high-
risk (red), while those below the median are considered
low-risk (blue). We compare our proposed model against
key baselines, including the best overall multimodal model
(MMPOT), the top transformer-based multimodal base-
line (MMPTrans), and the sole histology-text baseline (Sur-
vivMIL). We use the log-rank test [2] to assess whether the
difference between high- and low-risk groups is statistically
significant, considering a p-value threshold of 0.05.
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Figure 2. Two-phrase wordclouds for high-risk group (red) and low-risk (blue) group for TCGA-CRC depicting words from top text
segments based on histology prototypes.
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Figure 3. Kaplan-Meier curves comparing the proposed method with multimodal baselines. High-risk (red) and low-risk (blue) groups
were stratified using the median predicted risk. Statistical significance was assessed using the log-rank test.
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