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Figure 1. Spatial Information (SI) and Temporal Information (TI)
for our UGC360 dataset.

Subset Resolutions Minimum Maximum Clips

UGC360-S

0.5K 640× 320 640× 360 11
1K 960× 480 1280× 720 398
1.5K 1430× 1080 1430× 1080 5
2K 1920× 960 2048× 1056 4665
2.5K 2560× 1440 2560× 1440 1

UGC360-M

3K 3072× 1536 3072× 1536 161
4K 3840× 1920 3840× 2160 1449
5K 5376× 2688 5376× 2688 2
6K 5760× 2880 5760× 2880 6

UGC360-L 8K 7680× 3840 7680× 4320 168

Table 1. Distribution of resolutions in the UGC360 dataset.

1. Details on UGC360

Fig. 1 shows the Spatial Information (SI) and Temporal In-
formation (TI) [4] of all clips in the proposed UGC360
dataset. The data points for the different subsets are
color-coded as UGC360-S (blue), UGC360-M (orange),
and UGC360-L (green). For comparison, Fig. 2 plots the
SI/TI for the vimeo90k dataset [12]. Table 1 reports the
distribution of resolutions in our UGC360 dataset. Most
clips within the UGC360-S subset fall into the 2K resolu-
tion category with resolutions ranging from 1920 × 960 to
2048× 1056. In the UGC360-M subset, most clips fall into
the 4K resolution category with resolutions ranging from
3840 × 1920 to 3840 × 2160. The UGC360-L subset con-
sists exclusively of 8K clips with resolutions ranging from
7680× 3840 to 7680× 4320.

Each UGC360 subset includes a summary table in csv
format with columns: video id, clip id, publisher, license,
url, published at. Each row in the table refers to one clip
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Figure 2. Spatial Information (SI) and Temporal Information (TI)
for the vimeo90k [12] dataset.

in the dataset. The video id refers to the id of the video a
clip has been extracted from, the clip id refers to the corre-
sponding clip number. As clips are de-duplicated via their
gist descriptors and clips with low contrast are removed,
there might be gaps despite incremental clip numbering.
Publisher refers to the platform a clip has been obtained
from. License describes the CC license of the correspond-
ing video. The URL refers to the original video URL that
could, e.g., be used to extract longer clips for the videos in
the dataset.

2. Details on Mipmapping

Mipmapping is a well-known technique from computer
graphics that is utilized if sampling densities between
source and target meshes vary significantly among differ-
ent mesh positions [11]. Due to the vastly different scales at
which the pixel values are sampled in the ERP format - the
spherical sampling density increases significantly towards
the poles - reprojection may cause severe aliasing if polar
regions in the source format are projected to less densely
sampled regions in the target projection, e.g., the equator.
Mipmapping prepares the original image at multiple scales
and dynamically selects the most suitable scale for inter-
polation of each pixel position. For each mipmap level,
the original image is downscaled by a factor of 2 includ-
ing Gaussian pre-filtering for antialiasing. Fig. 3 shows an
image with 8 mipmap levels, which means that the lowest
scale is downsampled by a factor of 28 = 256 with respect
to the original image. This process allows to efficiently
pre-compute the original image at various antialiased scales
for fast antialiased interpolation during resampling. The
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Table 2. BD-Rate (%) in RGB color space with respect to the baseline DCVC-HEM finetuned on vimeo90k. Different model and training
set combinations. WS-PSNR used as quality metric for the 360-degree JVET360 dataset, PSNR for the remaining perspective datasets.
Column Average shows the average BD-Rate over all perspective dataset sequences. Highest rate savings for each dataset are marked bold.

Model Training set FGR JVET360 HEVC-B HEVC-C HEVC-D HEVC-E UVG Average

DCVC-HEM [6] vimeo90k 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DCVC-HEM [6] UGC360 -2.87 9.89 0.93 6.69 -5.39 8.43 5.61

✓ -6.68 3.69 -2.84 4.76 -11.17 2.55 0.71

DCVC-HEM [6] UGC360+
vimeo90k

-3.69 2.33 5.23 4.10 -7.43 0.19 1.13

✓ -6.21 -1.21 1.39 1.52 -10.88 -1.69 -1.82

DCVC-HEM
with PFE

UGC360+
vimeo90k

-5.31 4.36 1.28 1.93 -6.30 0.80 0.98

✓ -7.74 -1.95 -1.60 -2.62 -13.10 -3.94 -4.08

HM-18.0 [10] 30.34 30.34 3.82 23.27 12.13 24.05 20.45

VTM-22.2 [2] -3.61 -5.85 -24.00 -7.45 -23.16 -6.40 -11.66

mipmap level (Level of Detail, LoD) to use for interpo-
lating a pixel value is then obtained as follows [8]. The
Jacobian of the target coordinates in the source domain
ptar→src = (utar→src, vtar→src)

T with respect to the target co-
ordinates ptar = (utar, vtar)

T is calculated for each target
pixel position ptar ∈ Ptar

J =

[
∂utar→src
∂utar

∂utar→src
∂vtar

∂vtar→src
∂utar

∂vtar→src
∂vtar

]
. (1)

This matrix describes how a small step in the target domain
(reprojected image) translates to the source domain (origi-
nal image). An infinitesimal step along the utar-axis in the
target domain consequently yields a displacement by

Su =

√(
∂utar→src

∂utar

)2

+

(
∂vtar→src

∂utar

)2

(2)

in the source domain. Similarly, an infinitesimal step along
the vtar-axis in the target domain yields a displacement by

Sv =

√(
∂utar→src

∂vtar

)2

+

(
∂vtar→src

∂vtar

)2

(3)

in the source domain. These scales Su and Sv represent
the size of a target pixel (reprojected image) in the source
domain (original image). Typically, the maximum scale is
considered [8]

S = max(Su, Sv). (4)

The LoD is then selected such that one mipmapped pixel
closely matches the scaled target pixel size. Because the
mipmap resolution is halved in each step (i.e., the relative

Figure 3. Mipmapped image with 8 mipmap levels. For each
mipmap level, the original image is downscaled by a factor of 2
including Gaussian pre-filtering for antialiasing.

mipmapped pixel size is doubled in each step), the LoD is
obtained as

LoD = ⌊log2(S)⌋. (5)

In most computer graphics applications, a weighted average
of the obtained pixel values from both surrounding mipmap
levels is taken. In the regarded 360-degree data augmenta-
tion scenario, only the higher resolution mipmap level is se-
lected in favor of reduced computational complexity. This
is realized by flooring in (5). The LoD is calculated for
each target pixel position individually, such that interpola-
tion of each target pixel value is performed on the appropri-
ate mipmap level.

3. Further Results
3.1. RGB Color Space
Table 2 shows the rate savings achieved by our 360-degree
optimization framework for DCVC-HEM [6] and the ex-
tended DCVC-HEM-360 in RGB color space. It validates
the results from the main paper, where our proposed frame-
work was evaluated in YUV color space.
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Table 3. Ablation study investigating extension of different net-
work modules with positional feature encoding. BD-Rate (%) in
YUV color space with respect to default configuration MA. All
instances trained on UGC360+vimeo90k with flow-guided repro-
jection.

MA MB MC MD ME

Contextual encoder ✓ ✓ ✓ ✓
Contextual decoder ✓ ✓ ✓
Entropy model ✓ ✓ ✓
Context generator ✓

JVET360 0.00 0.24 0.32 0.42 -0.33
HEVC+UVG 0.00 0.27 4.13 1.13 3.29

Million parameters 17.528 17.524 17.527 17.532 17.532
GMACs 872.01 872.08 872.39 872.39 872.43

3.2. Positional Feature Encoding
Table 3 shows the results of an ablation study investigat-
ing the influence of the proposed positional feature encod-
ing. We train different variants MA - ME of DCVC-HEM-
360 incorporating the positional feature encoding at differ-
ent positions in the network. Model MA denotes the default
configuration, where the positional feature encoding is only
introduced to the entropy model. All models are trained on
the combined dataset UGC360+vimeo90k with flow-guided
reprojection.

While the performance between the different models
varies only slightly for 360-degree video - model ME even
achieves slight rate savings by 0.33% over the default model
- significant performance differences occur for perspective
video. Introducing the positional feature encoding into all
major network components leads to an increase in rate by
more than 3% for perspective video. From a theoretical
perspective, models MA - MD are a special case of model
ME, where the respective kernel weights for the additional
positional feature encoding channel are set to 0. However,
as training of neural networks is not a convex optimization
problem, it can not be guaranteed that training converges to
a global optimum. Thus, as the results show, it can be the
better option to omit additional parameters if they do not
prove to be beneficial. An additional benefit is the reduced
complexity overhead.

3.3. Performance with Other Models
Tables 4 and 5 show the achieved rate savings on 360-
degree and perspective video using the DCVC [5] and
DCVC-TCM [9] models in YUV and RGB color space, re-
spectively. DCVC-360 and DCVC-TCM-360 refer to the
extended NVCs incorporating positional feature encoding
into the respective entropy models as described in Sec-
tion 3.3 in the main paper. All models are finetuned on the
combined vimeo90k+UGC360 dataset using flow-guided
reprojection for data augmentation. To ensure a fair eval-

Table 4. Evaluation of the proposed 360-degree NVC frame-
work for the DCVC and DCVC-TCM models. BD-Rate (%) in
YUV color space with respect to DCVC trained on vimeo90k for
DCVC and DCVC-360, and with respect to DCVC-TCM trained
on vimeo90k for DCVC-TCM and DCVC-TCM-360.

Model JVET360 Average

DCVC [5] -6.05 -3.65
DCVC-360 -8.07 -4.93

DCVC-TCM [9] -4.25 2.87
DCVC-TCM-360 -4.81 0.24

Table 5. Evaluation of the proposed 360-degree NVC frame-
work for the DCVC and DCVC-TCM models. BD-Rate (%) in
RGB color space with respect to DCVC trained on vimeo90k for
DCVC and DCVC-360, and with respect to DCVC-TCM trained
on vimeo90k for DCVC-TCM and DCVC-TCM-360.

Model JVET360 Average

DCVC [5] -4.95 -2.69
DCVC-360 -7.51 -4.07

DCVC-TCM [9] -4.55 1.98
DCVC-TCM-360 -4.91 -0.12

uation, the baseline models of DCVC and DCVC-TCM are
finetuned on vimeo90k for the same number of iterations
as the models trained on vimeo90k+UGC360. For DCVC,
training on the combined dataset with flow-guided reprojec-
tion yields average rate savings of 6.05% (4.95%) for 360-
degree video and 3.65% (2.69%) for perspective video in
YUV (RGB) color space. For DCVC-360 with positional
feature encoding, rate savings increase to 8.07% (7.51%)
for 360-degree video and 4.93% (4.07%) for perspective
video.

For DCVC-TCM, training on the combined dataset with
flow-guided reprojection yields average rate savings of
4.25% (4.45%) for 360-degree video, but increases in rate
by 2.87% (1.98%) for perspective video. With rate savings
of 4.81% (4.91%) for 360-degree video, DCVC-TCM-360
with positional feature encoding improves only slightly over
DCVC-TCM trained with the combined dataset and flow-
guided reprojection. However, the losses experienced for
perspective video are significantly reduced. In YUV color
space, the increase in rate is significantly reduced from
2.87% (DCVC-TCM) to 0.24% (DCVC-TCM-360). In
RGB color space, slight rate savings of 0.12% are achieved.

These results validate that our approach generates im-
provements in 360-degree video compression performance
for other NVC architectures as well, while retaining com-
pression performance for traditional perspective video.
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3.4. Rate-Distortion Curves
Fig. 4 - 9 show the Rate-Distortion curves (RD curves)
for all sequences in the JVET360 [3], HEVC-B, -C, -D, -
E [1], and UVG [7] datasets. RD curves for the baseline
DCVC-HEM finetuned on vimeo90k are shown in blue,
RD curves for DCVC-HEM finetuned on the combined
UGC360+vimeo90k without FGR are shown in orange, RD
curves for DCVC-HEM finetuned on UGC360+vimeo90k
with FGR are shown in green, and RD curves for the ex-
tended DCVC-HEM-360 with positional feature encoding
finetuned on UGC360+vimeo90k are shown in red. For
context, the RD curves for the traditional HEVC [10] and
VVC [2] are shown with dashed lines in purple and brown.
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Figure 4. RD curves in YUV color space for each sequence in the JVET360 dataset.
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Figure 5. RD curves in YUV color space for each sequence in the HEVC-B dataset.
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Figure 6. RD curves in YUV color space for each sequence in the HEVC-C dataset.
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Figure 7. RD curves in YUV color space for each sequence in the HEVC-D dataset.
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Figure 8. RD curves in YUV color space for each sequence in the HEVC-E dataset.
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Figure 9. RD curves in YUV color space for each sequence in the UVG dataset.
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