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Abstract

In this document, we aim to supply the interested reader

with additional side-information on visual in-context learn-

ing on compositional medical tasks. This information in-

cludes more details on the datasets used for training, the

synthetic tasks we trained on, the experimental settings and

models we trained and how we evaluated them. We further

provide more qualitative outputs and information on used

open-source libraries. Finally, we name limitations and dis-

cuss the societal impact of our work.

1. Dataset

Our training dataset is based on the MedSAM dataset [33],

more specifically, the 38 datasets of which we show exam-

ples in Table 1, more details can be found in Table 2. As

can be seen, the datasets cover a wide variety of imaging

modalities.

We enrich the data with synthetic tasks, which we put

into task sequences for compositional medical tasks as we

described in the main paper. An example of the individual

generative-, transformation- and discriminative tasks we ex-

tract from each image-segmentation pair is shown in Tab. 3.

2. Information on experiments in Chapter 4.

Analysis of task recovery in codebooks

As we oultine in the main paper, we identify the limita-

tions that are induced when operating in the token space

of learned codebooks. These codebooks entail certain re-

construction errors, which we explored for simple image

reconstruction and the reconstruction of segmentation maps

on the datasets DAP ATLAS [25], BSDS/CBSD68 [35],

HAM10000 [48], Openorganelle (hela-2, hela-3, jurkat-

1, macrophage-2, sum-159) [20] and RETOUCH (cirrus,

topcon, spectralis) [12]. In Table 4, we show the results

gist ncar jet nipy spectral

Figure 1. Different colormaps for the ATLAS dataset with which

we supply codebooks to indicate the effect of visual prompting.

from the spiderplots in the main paper in numerical form.

There, results for auto-encoding images, noisy images and

segmentation maps are reported. For the ATLAS dataset

with its 142 classes, we briefly investigated the significance

of different color schemes when processing segmentation

maps. To do this, we utilized color-maps from matplotlib 1,

the names of which are indicated in Table 4. In Figure 1 we

show a segmentation map with these different color-maps.

The different VQ-GAN models we test are pre-trained

models from a model zoo 2 which is associated to [11, 43].

The models vary in their loss function in training and net-

work architectures which influences their codebook size and

latent tensor shape in the quantization layer. For a detailed

description of their differences we kindly refer the reader to

the explanations by Rombach et al. [43].

3. Hyperparameters for VQ-GAN and tran-

former training

In Table 5, we summarize the genreal hyperparameters of

the VQ-GAN models and the transformer models we train.

1https://matplotlib.org/stable/users/explain/

colors/colormaps.html
2https://github.com/CompVis/latent-diffusion/
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WMH FLAIR SpineMR ProstateADC COVID-19-Radiogr.-Datab. Intraretinal-Cystoid-Fluid

BraTS T1CE ISLES2022 DWI COVID19-CT-Seg-Bench ISIC2018 m2caiSeg

AbdomenCT1K AMOS ProstateT2 QIN-PROSTATE-Prostate LungMasks

Breast-Ultrasound Pneumothorax-Masks Kvasir-SEG COVID-19-20-CT-SegCh. LIDC-IDRI

LungLesions TotalSeg muscles TotalSeg organs CT-ORG Heart

hc18 TotalSeg cardiac AMOSMR BraTS T1 QIN-PROSTATE-Lesion

Chest-Xray-Masks-Labels CDD-CESM TCIA-LCTSC ISLES2022 ADC COVID-QU-Ex-l.M. Lung

CholecSeg8k crossmoda BraTS FLAIR

Table 1. Example images and segmentations from 38 datasets in MedSAM [33] which we use as basis for our investigation.



Dataset Link

AMOSMR [27] https://amos22.grand-challenge.org/Dataset/

BraTS T1 [7–10, 37] http://braintumorsegmentation.org/

BraTS T1CE [7–10, 37] http://braintumorsegmentation.org/

CDD-CESM [28] https://www.cancerimagingarchive.net/collection/cdd-cesm/

Chest-Xray-Masks-Labels [13, 24] https://www.kaggle.com/datasets/nikhilpandey360/chest-xray-masks-and-labels

COVID-19-20-CT-SegCh. [3, 44] https://covid-segmentation.grand-challenge.org/Data/

COVID-QU-Ex-l.M. Lung. [14, 17, 41, 46, 47] https://www.kaggle.com/datasets/anasmohammedtahir/covidqu

COVID19-CT-Seg-Bench [30] https://github.com/JunMa11/COVID-19-CT-Seg-Benchmark

crossmoda [18] https://crossmoda-challenge.ml/

hc18 [50] https://hc18.grand-challenge.org/

Heart [45] http://medicaldecathlon.com/

Intraretinal-Cystoid-Fluid [1] https://www.kaggle.com/datasets/zeeshanahmed13/intraretinal-cystoid-fluid

ISLES2022 ADC [21] https://www.isles-challenge.org/

ISLES2022 DWI [21] https://www.isles-challenge.org/

Kvasir-SEG [26, 40] https://datasets.simula.no/kvasir/

LungLesions [4] http://medicaldecathlon.com/

m2caiSeg [34] https://www.kaggle.com/datasets/salmanmaq/m2caiseg

Pneumothorax-Masks [53] https://www.kaggle.com/datasets/vbookshelf/pneumothorax-chest-xray-images-and-masks

ProstateADC [45] http://medicaldecathlon.com

ProstateT2 [45] http://medicaldecathlon.com

QIN-PROSTATE-Lesion [4, 19] http://doi.org/10.7937/K9/TCIA.2018.MR1CKGND

QIN-PROSTATE-Prostate [4, 19] http://doi.org/10.7937/K9/TCIA.2018.MR1CKGND

SpineMR [54] https://www.cg.informatik.uni-siegen.de/en/spine-segmentation-and-analysis

TCIA-LCTSC [52] https://www.cancerimagingarchive.net/collection/lctsc/

WMH flair [29] https://wmh.isi.uu.nl/

BraTS flair [7–10, 37] http://braintumorsegmentation.org/

Breast-Ultrasound [2] https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset

COVID-19-Radiogr.-Datab. [14, 41] https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database

ISIC2018 [15, 16, 48] https://challenge.isic-archive.com/data/

CholecSeg8k [23, 49] https://www.kaggle.com/datasets/newslab/cholecseg8k

TotalSeg cardiac [51] https://zenodo.org/records/6802614

CT-ORG [42] https://www.cancerimagingarchive.net/collection/ct-org/

TotalSeg organs [51] https://zenodo.org/records/6802614

TotalSeg muscles [51] https://zenodo.org/records/6802614

LIDC-IDRI [5] https://www.cancerimagingarchive.net/collection/lidc-idri/

AMOS [27] https://amos22.grand-challenge.org/

AbdomenCT1K [31, 32] https://github.com/JunMa11/AbdomenCT-1K

LungMasks [22] https://github.com/JoHof/lungmask

Table 2. Datasets with their citations and links for further information.

Both architectures and the effects of the hyperparameters in

source code can be found in the model definitions of either

VQ-GAN 3 or the GPT2 transformer 4.

4. Additional qualitative results

4.1. VQ­GAN reconstruction

In the main paper, we present quantitative results regarding

the upper bound of codebooks on the MedSAM datasets.

There, we evaluate a pre-trained VQ-GAN and different

fine-tuned variants which are trained on task data and in-

domain images. In Figure 2, we show the difference, that

our proposed fine-tuning (color remapping augmentation,

dataset- and task balancing) can make for representing task

data as compared to an ImageNet pre-trained model. It is

clearly evident, that the pre-trained reconstructions are not

able to capture the semantic content encoded in the segmen-

tation maps, while fine-tuning shows visually coherent re-

3https : / / github . com / CompVis / taming -

transformers/blob/master/taming/models/vqgan.py
4https : / / github . com / CompVis / taming -

transformers / blob / master / taming / modules /

transformer/mingpt.py
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Figure 2. Qualitative examples of auto-encoding segmentation

maps with VQ-GAN codebooks. First row shows inputs, sec-

ond row shows reconstructions with an ImageNet pre-trained VQ-

GAN, row three shows a model fine-tuned on task data with color

remapping augmentation and dataset + task balancing.

sults with only minor inaccuracies in color and shape.



box (width 1) box (width 1) box (width 1) box (width 3) box (width 3) box (width 3) box (width 5) box (width 5) box (width 5) brightness

color jitter noise equalize h-flip image inv-intens. inpaint point (width 1) point (width 1) point (width 1)

point (width 3) point (width 3) point (width 3) point (width 5) point (width 5) point (width 5) rotate 180
◦ rotate 270

◦ rotate 90
◦ segmentation

edges (width 1) edges (width 1) edges (width 1) edges (width 3) edges (width 3) edges (width 3) edges (width 5) edges (width 5) edges (width 5) skeleton (width 1)

skeleton (width 1) skeleton (width 1) skeleton (width 3) skeleton (width 3) skeleton (width 3) skeleton (width 5) skeleton (width 5) skeleton (width 5) super res. 100 super res. 25

super res. 50 v-flip

Table 3. Here, we show an example of how each image-segmentation pair is enriched with additional synthetic tasks.

The quantitative evaluation for reconstructing different

task-related images (i.e., Table 2 in the main paper) is car-

ried out on 22K test images and segmentation annotations

comprised of samples from the 38 datasets we use to train.

4.2. Qualitative compositional predictions

In Figure 3 and Figure 4 we display additional composi-

tional task sequences and associated predictions by the vi-

sual in-context transformer. We can observe, that the visual

in-context learner, even though the compositional tasks are

quite complex and encompass long sequences, can coher-

ently follow the instructions in the context task sequence.

Of course, we can also observe inaccuracies, such that cer-

tain structures can not be predicted coherently, such as de-

tailed structures in the brain in Figure 3 (top).

Interestingly, when inspecting the image modalities of

both Figure 3 and Figure 4, the wide range of modali-

ties, i.e., magnetic resonace imaging, computed tomogra-

phy, ultrasound, and even endoscopy images can be cap-

tured nicely.

In some cases, we see, that the visual in-context learner

can capture the distribution of the expected output, e.g., the

segmentation in the last two columns of Figure 3, in the

example at the bottom, but the predicted structures are lo-

cated at the wrong position. This might be a hint that in

case the model is not able to connect the image pattern to

the semantic structure, as defined in the context set, it hallu-

cinates a wrong but overall plausible-looking output. Fine,

small structures in medical imaging datasets might elevate

this problem which also highlights the challenging setting.

5. Limitations

Despite the promising results, the approach has several lim-

itations that need to be addressed in future work. The

granularity of what the codebooks can represent limits
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IoU↑ IoU↑ IoU↑ MAE↓ PSNR↑ RMSE↓ RMSE↓ RMSE↓ RMSE↓ RMSE↓ RMSE↓ MAE↓ IoU↑ MAE↓ IoU↑ MAE↓ IoU↑ MAE↓ IoU↑ MAE↓ IoU↑ MAE↓ IoU↑ MAE↓ IoU↑ MAE↓ IoU↑ MAE↓ IoU↑

VQ-GAN f4 0.40 0.29 0.38 0.03 27.39 0.05 0.06 0.07 0.09 0.11 0.14 0.01 1.00 0.01 0.71 0.04 0.81 0.00 0.83 0.00 0.82 0.01 0.96 0.03 0.98 0.01 0.99 0.02 0.98

VQ-GAN f8 0.30 0.19 0.31 0.05 22.48 0.08 0.09 0.09 0.11 0.14 0.17 0.02 1.00 0.02 0.68 0.07 0.80 0.01 0.81 0.01 0.80 0.01 0.95 0.05 0.98 0.02 0.98 0.03 0.98

VQ-GAN f8-n256 0.22 0.23 0.28 0.05 21.81 0.09 0.09 0.10 0.12 0.15 0.18 0.02 1.00 0.02 0.65 0.08 0.78 0.01 0.77 0.01 0.78 0.01 0.94 0.04 0.97 0.03 0.97 0.03 0.97

VQ-GAN f16 0.17 0.18 0.22 0.06 20.50 0.10 0.11 0.11 0.13 0.15 0.18 0.02 0.99 0.02 0.61 0.09 0.74 0.01 0.75 0.01 0.73 0.01 0.94 0.05 0.95 0.03 0.95 0.04 0.96

VQ-GAN f4-kl 0.44 0.27 0.43 0.03 27.46 0.05 0.06 0.07 0.09 0.12 0.15 0.01 1.00 0.01 0.71 0.04 0.81 0.01 0.82 0.01 0.80 0.01 0.96 0.03 0.99 0.01 0.99 0.02 0.99

VQ-GAN f8-kl 0.33 0.28 0.35 0.04 23.65 0.07 0.08 0.09 0.11 0.13 0.16 0.02 1.00 0.02 0.69 0.07 0.81 0.01 0.82 0.01 0.80 0.01 0.95 0.04 0.97 0.02 0.98 0.03 0.98

VQ-GAN f16-kl 0.34 0.28 0.34 0.04 23.51 0.07 0.08 0.09 0.11 0.13 0.16 0.02 1.00 0.02 0.68 0.07 0.80 0.01 0.80 0.01 0.79 0.01 0.96 0.04 0.98 0.02 0.98 0.03 0.98

VQ-GAN f32-kl 0.27 0.22 0.28 0.05 21.80 0.09 0.09 0.10 0.12 0.14 0.17 0.02 1.00 0.02 0.63 0.08 0.77 0.01 0.77 0.01 0.76 0.01 0.95 0.04 0.97 0.03 0.97 0.03 0.97

Table 4. Preliminary evaluation of the ImageNet pre-trained codebooks from Figure 3 in the main paper represented in numerical form.

The different rows show different pretrained Codebooks, columns indicate different datasets where it is indicated in brackets whether

the images of the datasets are autoencoded or the segmentation maps are autoencoded to determine the upper performance bounds with

respective codebooks.

Hyperparameter VQ-GAN Transformer

learning rate 4.5e− 06 4.5e− 06

batch size 96 4

codebook size 16384 16384 + 2

codebook enc. resolutions 1, 1, 2, 2, 4 N/A
⌞residual blocks per level 2 N/A

block size N/A 4, 500

# encoder layers N/A 6

# attention heads N/A 16

embdding dimension N/A 1, 408

dropout ratio (embedding) N/A 0.1

dropout ratio (residual) N/A 0.1

dropout ratio (attention) N/A 0.1

hardware 4×NVIDIA 4×NVIDIA

A100 40GB A100 40GB

Table 5. Overview of the hyperparamters for both the VQ-GAN

models and the GPT2 transformers we train.

their ability to recover fine-grained structures and, while

color remapping augmentation improves generalization, the

model remains sensitive to color variations where classes

are encoded in very similar colors (e.g., different shades of

blue encoding different classes).

Ensuring consistency across intermediate outputs of the

visual in-context learner is a remaining challenge as well.

The model currently may produce misaligned sub-task pre-

dictions, affecting the overall coherence in the output se-

quence. This also ties into the qualitative observation that

with longer sequences the intermediate outputs degrade suc-

cessively (e.g., Figure 3, second row where late in the se-

quence, the predicted brain scan is tinted blue).

The synthetic task generation pipeline, although effec-

tive, may not fully capture the complexity and diversity

of real-world tasks which might impact the model’s gen-

eralization capabilities. Exploring the effects of adapting

this task generation pipeline from a data-centric perspective

would be beneficial.

Balancing training data between imaging data and task

outputs is crucial but challenging, especially with diverse

datasets with different amounts of samples and the different

generative-, transformation- and discriminative tasks.

Evaluation metrics such as IoU, F-1 Score, MAE,

RMSE, and PSNR, while useful, may not fully capture

the nuances of complex task sequences, necessitating more

comprehensive evaluation frameworks. Here, efforts to-

wards designing a compositional medical task benchmark

are needed which encompasses a wide variety of composi-

tional task prompts and associated evaluation schemes.

Finally, while the model shows promising results on

complex, compositional task sequences, there is still much

room for improvement when moving to out-of-domain se-

quences, i.e., when moving beyond training datasets. One

elevating factor for the presented approach could lie in

model- and data scale, as visual in-context learners that

were trained on larger datasets, with higher parameter

counts [6] exhibited strong out-of-domain capabilities.

Addressing these limitations will be crucial for advanc-

ing visual in-context learning and enabling more robust,

adaptable models for a wide range of applications. Fu-

ture work should focus on enhancing codebooks, improving

training strategies, expanding the synthetic task pipeline,

and developing comprehensive evaluation frameworks.

6. Utilized open source code and libraries

We heavily build on the two codebases 5 6 and their open-

source models. The GPT-2 implementation is based on the

repository of minGPT 7. Further, we make heavy use of li-

5https://github.com/CompVis/taming-transformers
6https://github.com/CompVis/latent-diffusion
7https://github.com/karpathy/minGPT/



Context compositional task sequence
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Query Ground-truth compositional task sequence
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Figure 3. Additional compositional contexts, predicted task sequences and the associated ground-truth task sequences.

braries such as Pytorch [38], Pandas [36] and sklearn [39].

7. Impact statement

This paper presents work whose goal is to explore machine

learning techniques for solving compositional visual tasks

from the field of medical image analysis. Specifically, our

goal is to enable users to specify vision-task pipelines with-

out the requirement of programming knowledge or model

re-training. This goal inherently means, that a broader audi-

ence could be able to use the developed models, which may

include users with malicious intent. As the current models

are not able to produce results that are on a level to be used

in medical practice and mainly serve to advance research,

the factor of misuse may be of relatively low concern.

We utilize a broad set of medical datasets for this explo-

ration and train models on it. As such, these models may re-

flect the biases within these datasets, such as gender-, age-

or ethnicity imbalance.



Context compositional task sequence

Query Predicted sequential output

Query Ground-truth compositional task sequence

Context compositional task sequence
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Query Ground-truth compositional task sequence

Figure 4. Additional compositional contexts, predicted task sequences and the associated ground-truth task sequences.
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