
Neural Compression for 3D Geometry Sets
(Supplementary Material)

In this supplementary material, we provide more details about the regular geometry representation
of our NeCGS in Sec. 1, the auto-decoder neural network used in NeCGS in Sec. 2, and additional
experimental settings and results in Sec. 3.

1. Details of Regular Geometry Representation
1.1. Tensor Quantization

Denoted by x a tensor. We quantize it in a fixed interval, [a, b], at (2N + 1) levels1 by

Q(x) = Round

(
Clamp(x, a, b)− a

s

)
× s+ a, (4)

where s = (b− a)/2N . In our experiment, we set a = −1 and b = 1.

1.2. Optimization of TSDF-Def Tensor

We set a series of camera pose, T = {Ti}Ei=1, around the meshes. Let ID1 (Ti) and ID2 (Ti) represent
the depth images obtained from the reconstructed mesh DMC(V) and the given mesh S at the pose Ti

respectively. Similarly, let IM1 (Ti) and IM2 (Ti) denote their respective silhouette images at pose Ti. The
reconstruction error produced by silhouette and depth images at all pose are

EM(DMC(V),S) =
∑
Ti∈T

∥IM1 (Ti)− IM2 (Ti)∥1 (5)

and
ED(DMC(V),S) =

∑
Ti∈T

∥ (ID1 (Ti)− ID2 (Ti)) ∗ IM2 (Ti)∥1. (6)

Then the reconstruction error is defined as

ERec(DMC(V),S) = EM(DMC(V),S) + λrecED(DMC(V),S), (7)

where E = 4 and λrec = 10 in our experiment.

1We partition the interval [a, b] into (2N + 1) levels, rather than 2N levels, to ensure the inclusion of the value 0.

1



2. Auto-decoder-based Neural Compression
2.1. Upsampling Module

In each upsampling module, we utilize a PixelShuffle layer [2] between the convolution and activation lay-
ers to upscale the input, as shown in Fig. 13. The input feature tensor has dimensions (Nin, Nin, Nin, Cin),
with an upsampling scale of s and an output channel count of Cout.
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Upsampling Module

Figure 13. Upsampling Module.

3. Experiment
3.1. Evaluation Metric

Let SRec and SGT denote the reconstructed and ground-truth 3D shapes, respectively. We then randomly
sample Neval = 105 points on them, obtaining two point clouds, PRec and PGT. For each point of PRec

and PGT, the normal of the triangle face where it is sampled is considered to be its normal vector, and
the normal sets of PRec and PGT are denoted as NRec and NGT, respectively. Let NN Point(x,P) be the
operator that returns the nearest point of x in the point cloud P. The CD between them is defined as

CD(SRec,SGT) =
1

2Neval

∑
x∈PRec

∥x− NN Point(x,PGT)∥2

+
1

2Neval

∑
x∈PGT

∥x− NN Point(x,PRec)∥2.
(8)

Let NN Normal(x,P) be the operator that returns the normal vector of the point x’s nearest point in the
point cloud P. The NC is defined as

NC(SRec,SGT) =
1

2Neval

∑
x∈PRec

|NRec(x) · NN Normal(x,PGT)|

+
1

2Neval

∑
x∈PGT

|NGT(x) · NN Normal(x,PRec)|.
(9)

F-Score is defined as the harmonic mean between the precision and the recall of points that lie within a
certain distance threshold ϵ between SRec and SGT,

F− Score(SRec,SGT, ϵ) =
2 · Recall · Precision
Recall+ Precision

, (10)



where

Recall(SRec,SGT, ϵ) =

∣∣∣∣{x1 ∈ PRec, s.t. min
x2∈PGT

∥x1 − x2∥2 < ϵ

}∣∣∣∣ ,
Precision(SRec,SGT, ϵ) =

∣∣∣∣{x2 ∈ PGT, s.t. min
x1∈PRec

∥x1 − x2∥2 < ϵ

}∣∣∣∣ . (11)

Decoder

Figure 14. Pipeline of QuantDeepSDF.

3.2. QuantDeepSDF

Compared to DeepSDF [1], our QuantDeepSDF incorporates the following two modifications:
• The decoder parameters are quantized to enhance compression efficiency.
• To maintain consistency with our NeCGS, the points sampled during training are drawn from TSDF-Def

tensors.
The pipeline of QuantDeepSDF is shown in Fig. 14. Specifically, the decoder is an MLP, where the input
is the concatenated vector of coordinate x ∈ R3 and the i-th embedded feature vector Fi ∈ RC , and the
output is the corresponding TSDF-Def value. In our experiment, the decoder consists of 8 layers, and the
compression ratio is controled by changing the width of each layer.

3.3. Auto-Encoder in Ablation Study

Different from the auto-encoder used in our framework, where the embed features are directly optimized,
auto-encoder utilizes an encoder to produce the embedded features, where the inputs are the TSDF-Def
tensors. And the decoder is kept the same as our framework. During the optimization, the parameters of
encoder and decoder are optimized. Once optimized, the embedded features produced by the encoder and
decoder parameters are compressed into bitstreams.

3.4. More Visual Results

Fig. 15 shows more visual comparison between different methods on the AMA dataset, DT4D dataset,
and Thingi10K dataset. Obviously, the decompressed models through our method have less distortion
than baseline methods. Fig. 16 showcases the decompressed models with detailed structures obtained
using our method, demonstrating that the detailed structures are well-preserved after decompression. Figs.
17, 18 and 19 depicts the visual results of the decompressed models from these datasets under various
compression ratios. With the compression ratio increasing, the decompressed models still preserve the
detailed structures, without large distortion.



(a) GPCC (b) VPCC (c) PCGCv2 (d) Draco (e) QuantDeepSDF (f) Ours (g) Original

148.76 49.81 107.86 95.64 165.47 166.79

148.64 49.81 106.78 98.64 165.47 166.79

457.12 244.38 402.32 158.67 409.21 455.25

457.64 244.38 404.25 157.67 409.21 455.25

291.18 165.75 267.89 96.78 224.17 362.80

290.19 165.75 264.16 98.16 224.17 362.80

Figure 15. Visual comparisons of different compression methods. All numbers in corners represent the compression
ratio. ü Zoom in for details.
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Figure 16. Visualization of the decompressed models with detailed structures. ü Zoom in for details.

(a) Original (b) 253.45

(c) 362.80 (d) 500.54

Figure 17. Visual results of the decompressed models from the AMA dataset under different compression ratios.



(a) Original (b) 455.26

(c) 651.85 (d) 899.73

Figure 18. Visual results of the decompressed models from the DT4D dataset under different compression ratios.

(a) Original (b) 166.79

(c) 219.84 (d) 273.32

Figure 19. Visual results of the decompressed models from the Thingi10K dataset under different compression
ratios.
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