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7. Additional Implementation Details
We use 8 NVIDIA A800 80G GPUs to train our models
for both ablation study and full-scale training. For ablation
studies, the learning rate is set to 1e-5 for pretraining and
1e-7 for instruction-tuning. We further conduct a hyperpa-
rameter search and find that setting the learning rate to 5e-6
during instruction-tuning works the best for VAMBA across
multiple benchmarks. We therefore set the learning rate to
1e-5 for pretraining and 5e-6 for instruction tuning for full-
scale training. We employ a cosine learning rate schedule
for all training stages in both ablation studies and full-scale
training. The training batch size is set to 128. We em-
ploy training optimization methods such as Flash-Attention
2 [16], DeepSpeed ZeRO-3 [52] and gradient checkpointing
[13] to reduce the training cost, and apply sequence paral-
lelism to pack multiple samples into one sequence during
training in both stages.

8. Model Evaluation Details
In this section, we provide more details for benchmarking
VAMBA and our selected baseline models.

8.1. Baseline Models
Qwen2-VL [63] is an LMM that uses the Qwen2 LLM as its
backbone and a DFN-derived Vision Transformer with 2D
RoPE positional embedding. It is pretrained on a vast 1.4T-
token multimodal corpus composed of image-text pairs,
OCR text (images of text), interleaved image–text web ar-
ticles, visual QA data, video dialogues, and image-based
knowledge datasets. The pre-training is staged: 600B to-
kens for vision-language alignment followed by 800B to-
kens mixing richer image–text content and VQA/multitask
data, alongside continued pure text to maintain language
skills. Finally, Qwen2-VL is instruction-tuned via ChatML-
format dialogs that span multiple modalities, e.g. docu-
ment parsing, comparisons of two images, long video un-
derstanding, and even agent-oriented visual tasks.
LLaVA-Mini [74] is a compact multimodal model built on
a 7–8B Vicuna LLM with a CLIP ViT-based vision en-
coder. It uses the same training data as LLaVA-1.5 [43]:
about 558K image–caption pairs for initial vision–language
pre-training and 665K image-grounded instruction exam-
ples for fine-tuning. The pre-training stage aligns visual
features to text using caption datasets like COCO [14] and
VisualGenome-based [32] captions, while the instruction-
tuning stage uses multimodal dialogues. An enhanced vari-
ant of LLaVA-Mini further incorporates 100K video-based
instruction samples from Video-ChatGPT [49] and other

open sources, combined with the original 665K image in-
structions (total 3M training instances) to extend its capa-
bility to video understanding.
LongLLaVA [65] extends LLaVA [43] to handle very
long visual contexts by using a hybrid Transformer–Mamba
architecture with a Jamba-9B backbone for language.
It follows a three-stage training process, including a
single-image feature alignment on Allava-Caption [10]
and ShareGPT4V [11], a single-image instruction fine-
tuning on LLava-1.5 and Mantis-Single [30], and multi-
image instruction fine-tuning on VideoChat2 [38] and
ShareGPT4Video [12]. By progressively increasing the
number of images per sample, LongLLaVA learns tempo-
ral and spatial dependencies and can efficiently handle input
sequences up to around 1000 images.
LongVU [55] is a multimodal model geared toward long
video understanding. It first learns from 3.2 million im-
age–text pairs via a single-image training stage using the
LLaVA-OneVision dataset [35]. It then leverages a subset
of VideoChat2-IT [38] that contains around 0.55M videos,
1K video-classification clips from Kinetics-710 [7], and
about 85K multimodal video instruction dialogues from the
ShareGPT4Video [12]. Additionally, the MovieChat long-
video dialogue data [58] is used to provide hour-length
conversational examples. This rich training mix enables
LongVU to handle extended videos by adaptively com-
pressing frames while preserving essential visual details.
Video-XL [56] employs an LLaMA-based 7B language
model and a CLIP ViT-L vision encoder, and it is trained
entirely on image-based data despite targeting long videos.
Its two-stage training first performs projection-layer pre-
training on 2M image–text pairs from Laion-2M [54] to
align visual features with the text space. It then undergoes
visual instruction tuning on roughly 695K image-grounded
instruction samples from Bunny-695k [27], where the
model learns to follow image-based instructions. The train-
ing approach lets Video-XL handle hour-long videos in con-
text by compressing visual tokens, achieving strong results
on benchmarks for long video comprehension.

8.2. Evaluation Benchmarks
LVBench [64] is a benchmark designed to test the abil-
ity of video LMMs to comprehend extremely long videos.
It contains 1,549 question-answer pairs, with an average
video length of 4,101 seconds. The evaluation focuses on
six fundamental aspects: temporal grounding, which in-
volves identifying specific moments in a video; video sum-
marization, which assesses the model’s ability to condense
key information; video reasoning, which tests logical infer-



ence from video content; entity recognition, which identi-
fies people, objects, or places; event understanding, which
captures the sequence and significance of events; and key
information retrieval, which ensures the model extracts cru-
cial details. The full test set is used for evaluation.
HourVideo [8] is a benchmark dataset for long-form video-
language understanding, focusing on videos up to one
hour in length. It consists of 500 carefully selected first-
person videos sourced from the Ego4D [23] dataset, with
each video ranging from 20 to 120 minutes in duration.
The dataset includes 12,976 human-annotated multiple-
choice questions covering four major task categories: sum-
marization, perception, visual reasoning, and navigation.
HourVideo is designed to challenge models in long-context
reasoning and multimodal comprehension across extended
video timelines. Benchmark results reveal that existing
multimodal models, such as GPT-4 and LLaVA-NeXT, per-
form only marginally better than random chance, while hu-
man experts achieve an accuracy of 85.0%. This highlights
the dataset’s difficulty and the current gap in long-video un-
derstanding capabilities.
Video-MME [21] is a benchmark specifically designed to
evaluate how well LMMs can analyze video content. It fea-
tures a dataset of 900 videos and 2700 questions, cover-
ing six different visual domains. The questions are grouped
based on video length into short, medium, and long cate-
gories, with median durations of 26 seconds, 164.7 seconds,
and 890.7 seconds, respectively. The benchmark supports
two evaluation methods: (1) the “w/ subtitle” setting, where
both subtitles and questions are provided as text inputs, and
(2) the “w/o subtitle” setting, which relies only on raw video
inputs alongside the questions. Our study primarily focuses
on the “w/o subtitle” format to enhance long video com-
prehension by leveraging video-based augmentation rather
than textual cues from subtitles.
MLVU [76] is a benchmark designed to assess long video
understanding across various tasks and video genres. It in-
cludes two types of questions: multiple-choice and freeform
generation. The evaluation framework measures LMM per-
formance in three key aspects: (1) holistic video under-
standing, which requires comprehending the entire video
for global context; (2) single-detail video understanding,
which focuses on recognizing key moments or short seg-
ments; and (3) multi-detail video understanding, which in-
volves drawing connections between multiple short clips
within the video. Our paper specifically reports accuracy
scores for multiple-choice questions from the MLVU de-
velopment set.
LongVideoBench [67] is a question-answering benchmark
designed for interleaved long video-text input. It includes
3,763 videos and 6,678 human-annotated multiple-choice
questions covering 17 fine-grained categories. The bench-
mark supports two evaluation formats: (1) the standard for-

mat, where video tokens are processed first, followed by
the question descriptions, and (2) the interleaved video-text
format, where subtitles are inserted between video frames.
We evaluate all baseline models and our VAMBA using the
standard input format. The reported results are based on the
validation split.

NExT-QA [68] is a video question-answering benchmark
designed to evaluate reasoning-based video understand-
ing. It consists of 5,440 videos and approximately 52,000
human-annotated question-answer pairs, covering a diverse
range of real-world activities. The dataset includes two
types of question formats: multiple-choice questions and
open-ended free-form questions. NExT-QA emphasizes
causal and temporal reasoning, requiring models to under-
stand event sequences, cause-effect relationships, and in-
teractions within videos. The dataset is divided into three
categories: causal, temporal, and descriptive questions.
The dataset is split into training (3,870 videos), validation
(570 videos), and test (1,000 videos), ensuring standardized
benchmarking.

MVBench [40] is a comprehensive multimodal video un-
derstanding benchmark. The dataset introduces a novel
static-to-dynamic task transformation, converting existing
static image tasks into video-based challenges, assessing a
model’s ability to perform both low-level perception and
high-level cognitive reasoning over time. MVBench auto-
matically converts annotations from 11 publicly available
video datasets into unified multiple-choice question-answer
pairs, covering diverse scenarios ranging from first-person
to third-person perspectives and indoor to outdoor environ-
ments. Each question presents five answer choices, ensur-
ing standardized evaluation through human-verified ground
truth responses.

DREAM-1K [62] is a video description dataset designed
for fine-grained event and motion understanding. It con-
tains 1,000 short videos, each averaging 9 seconds, and
covers a diverse set of real-world and cinematic scenar-
ios. Unlike question-answering datasets, DREAM-1K re-
quires models to generate detailed multi-sentence descrip-
tions that capture all key actions, interactions, and tem-
poral sequences within each video. The dataset includes
videos from five different sources—live-action movies, ani-
mated films, stock footage, long YouTube videos, and short-
form social media clips—ensuring broad coverage of vi-
sual styles. DREAM-1K prioritizes event-based reason-
ing, expecting models to understand sequential actions, mo-
tion cues, and interactions rather than just static descrip-
tions. Evaluation is conducted using AutoDQ (Automatic
Description Quality), which measures how well generated
descriptions align with reference descriptions by comparing
extracted events.



Vamba: The video features two children sitting on a beige couch in a cozy living room, engaging in a playful and interactive
activity. The child on the left is dressed in a blue shirt with a colorful design and a blue headband, while the child on the right
wears a blue shirt with a Nike logo. They are holding a large brown teddy bear and appear to be playing a game of rock-paper-
scissors. The background includes a staircase with wooden steps and a white door, adding to the homely atmosphere. The
children are using hand gestures and facial expressions to emphasize their points, and their interaction is lively and engaging. The
scene continues with the children still deeply involved in their game, maintaining their energetic and playful demeanor. The video
captures the essence of their playful interaction, highlighting their enthusiasm and engagement in the activity.

Question: Briefly describe the video.

Question: Briefly describe the video.

Vamba: The video features a small bird with brown and white feathers perched on a ledge, set against a backdrop of a cityscape
with tall buildings under a clear blue sky with scattered clouds. The bird is positioned next to a yellow bucket attached to the
ledge by a chain. As the scene progresses, a small gray rodent with a pink nose and white fur appears and starts to climb into the
yellow bucket. The bird remains perched on the ledge, observing the rodent's actions. The rodent continues to climb into the
bucket, eventually disappearing inside. The bird then looks around, seemingly curious about the rodent's disappearance. The
video concludes with the bird still perched on the ledge, gazing out over the cityscape.

Vamba: The man is struggling to climb out of the icy pool, using his hands and a pickaxe to grip the icy surface.

Question: Briefly describe the video.

Figure 6. Additional qualitative results for VAMBA.

9. Comparison with Contemporary Work

Several contemporary works also investigate hybrid
Mamba-Transformer models for long video understanding.
For example, STORM [31] and BIMBA [28] utilize Mamba
blocks between the vision encoder and LMM decoder as ad-
ditional processing and compression modules for video to-
kens, achieving high performance in long video understand-
ing. However, different from VAMBA, the overall architec-
ture of the LMM remains unchanged in these methods, with
the decoder still relying on full causal self-attention layers
for both text and video tokens. As a result, the model ar-
chitectures proposed in these methods offer limited gains in
training and inference efficiency, with any speedup in video
processing still primarily attributed to token reduction. In
comparison, VAMBA directly employs Mamba-2 layers in
the LMM decoder and bypasses the self-attention updates

for video tokens. This design enables highly efficient video
processing even without reducing the number of tokens.

Table 6. Quantitative results for VAMBA with token reduction.

Models GPU Mem (MB) LVBench VideoMME MLVU

VAMBA 45791 42.4 57.4 65.9
VAMBA-TR 33847 41.6 56.9 66.5

10. Combining VAMBA and Token Reduction
As mentioned in the paper, we expect VAMBA to be compat-
ible with token reduction, and combining VAMBA and token
reduction can potentially result in similar performance and
even higher efficiency. We provide some preliminary results
for combining VAMBA and token reduction in this section.
As shown in Table 6, we can simply uniformly drop 50% of



the video tokens during inference (denoted as VAMBA-TR)
and achieve little performance drop across multiple bench-
marks with better efficiency. We believe finetuning VAMBA
with token reduction can further preserve its capacity and
leave this as a future work.

11. Additional Qualitative Results
In this section, we showcase more qualitative results from
our VAMBA for detailed video captioning and video event
understanding. The results are shown in Figure 6.
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