
SL2A-INR: Single-Layer Learnable Activation for Implicit Neural
Representation

Supplementary Material

This supplementary material presents further details, in-
cluding the activation function visualization, the specific
hyperparameter values, the reasoning behind the proposed
method, an analysis of the computational complexity of
SL2A, and additional applications of our approach to sin-
gle image super-resolution.

1. Activation Function Visualization
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Figure 1. Frequency spectrum of our learnable activation block
Ψ(x).

Figure 1 shows the frequency spectrum of learnable activa-
tion block (Ψ(x)) across different values ofK. The top row
illustrates the function ψ(x) in the time domain, while the
bottom row shows its amplitude spectrum in the frequency
domain. As K increases, the basis functions are capable of
covering a wider frequency and bandwidth range and pre-
serving high-frequency components, which is crucial for ac-
curate INRs. By expanding the frequency coverage, SL2A
enhances the capacity to learn complex, high-frequency pat-
terns effectively, addressing spectral bias problem.

2. SL2A Design Choice
2.1. Chebyshev Polynomial.
Our architecture leverages Chebyshev polynomials to pa-
rameterize learnable functions due to their well-established
advantages in numerical approximation. These polynomi-
als exhibit superior convergence properties, numerical sta-
bility, and orthogonality, making them highly effective for
function approximation [5]. One key motivation for us-
ing Chebyshev polynomials over B-splines is their abil-

ity to efficiently approximate activation functions such as
ReLU. The minimax property of Chebyshev polynomials
ensures that they minimize the maximum error in polyno-
mial approximations, leading to higher accuracy with fewer
parameters [4, 5]. Additionally, Chebyshev polynomials
provide strong spectral approximation capabilities, making
them well-suited for capturing high-frequency components
of functions [1]. Compared to the B-splines used in KANs,
which rely on grid-based representations and suffer from
inefficiencies in deeper layers, Chebyshev polynomials of-
fer a more flexible and efficient alternative. Prior research
[6, 8], has demonstrated that integrating Chebyshev poly-
nomials into KANs enhances efficiency, and our experi-
ments further confirm that using them in KAN architec-
ture leads to improved performance, as evidenced in Tab. 1.
While integrating Chebyshev polynomials into KANs im-
proves efficiency and performance, the result is still subop-
timal. Our approach mitigates the inefficiencies of using
KANs in all layers by leveraging Chebyshev-based activa-
tion learning in earlier layers while propagating rich repre-
sentations through skip connections. This hybrid approach
enhances overall performance compared to standard KAN
architectures. Thus, the decision to use Chebyshev polyno-
mials instead of B-splines (or other polynomials) is driven
by their superior approximation properties, stability, and ef-
ficiency, ultimately leading to improved performance in our
proposed architecture.

2.2. ReLU Layer.

We analyze the impact of the ReLU activation in our archi-
tecture by comparing models with and without ReLU across
different ranks of linear layers and polynomial degree con-
figurations. Specifically, alternative formulations of Equa-
tion (4) in the paper could remove ReLU, leading to:

z1 = Ψ(x),

zl = Wl(zl−1 ⊙ z1) + bl, l = 2, 3, . . . , L− 1,

fθ(x) = WL(zL−1 ⊙ z1) + bL.
(1)

Table 1. Comparison of PSNR of SL2A and KAN methods for
image approximation (image 00).

Method #Params (M) Time (min.) Size (MB) PSNR SSIM

KAN (B-Spline) 0.329 210.1 0.93 25.40 0.722
KAN (Chebyshev) 0.203 4.27 0.78 30.50 0.845
SL2A 0.330 0.77 0.93 33.40 0.892



As shown in Fig. 2, removing ReLU results in a consis-
tent PSNR drop, with more severe degradation observed in
lower-degree Chebyshev expansions, highlighting the criti-
cal role of ReLU in enhancing the model’s expressive power
to capture complex signal representations. The largest per-
formance drop is 6.22 dB in lower-degree configurations,
demonstrating its critical importance, Even in higher-degree
settings, ReLU continues to provide improvements, rein-
forcing its necessity for expressivity. These results confirm
that the modulation of layers by learnable activation Ψ(x)
could be insufficient and introducing nonlinearity such as
ReLU improves performance and expressive power.
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Figure 2. Comparison of PSNR (dB) across different rank-degree
configurations with and without ReLU activation. Removing
ReLU results in a consistent performance drop, particularly in
lower-degree Chebyshev expansions, highlighting its importance
in maintaining stability and expressivity.

3. Chebyshev Degree/ Linear layer rank Efeect

Figures 3 and 4 illustrate the impact of rank of linear layers
and the polynomial degree on PSNR for image representa-
tion tasks. As shown Fig. 3, increasing both the Chebyshev
polynomial degree and rank of linear layers leads to higher
PSNR values, demonstrating the effectiveness of higher-
degree representations in capturing finer details. More im-
portantly, the results reveal a critical trade-off: under similar
model size or parameter constraints, increasing the polyno-
mial degree in the initial layer generally yields better ac-
curacy than using higher-rank configurations with a lower
degree in the image representation task. For instance, the
blue point on the right (363k parameters) achieves superior
PSNR than the orange point in the middle (330k param-
eters) despite having fewer rank, and similar trends hold
across other configurations. This validates our architectural
choice of employing lower-rank linear layers in deeper lay-
ers while allowing a higher polynomial degree in the initial
layer, enabling efficient representations without excessive
parameter growth. Figure 4 further supports this intuition
by presenting the same analysis without ReLU activations.

The observed trends remain consistent, reinforcing that al-
tering the rank of linear layers alone is less effective in im-
proving performance when ReLU is removed. This high-
lights the complementary role of non-linear activation func-
tions and low-rank layers in achieving a balance between
efficiency and expressivity in our proposed architecture.
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Figure 3. PSNR comparison across different rank-degree configu-
rations and model sizes. Higher polynomial degrees lead to better
performance, particularly when using lower-rank linear layers in
deeper stages, supporting our architectural design choice.
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Figure 4. PSNR comparison without ReLU activation. The trend
remains consistent, showing that modifying rank alone has lim-
ited effect on performance, further highlighting the importance of
structured polynomial expansions.

4. Hyperparameter Settings

In accordance with the configurations used in prior stud-
ies, we employed the hyperparameter settings summarized
in Tab. 2 for the image fitting task. Furthermore, we adopted
the same initialization scheme as in these works, utilizing



the publicly available implementation provided by the au-
thors.

Table 2. Configuration details of different models used in the ex-
periments.

Model K ω0 s0 Layers Hidden Features
Finer - 30 - 5 256
Wire - 20 30 4 300
Gauss - - 30 5 256
Siren - 30 - 5 256
ReLU+P.E. - - - 5 256
SL2A 256 - - 5 256

5. Computational Complexity

We analyze the computational complexity in terms of the
number of parameters, and training time (per image/SDF),
across different tasks, as summarized in Tabs. 3 and 4. Al-
though our method, SL2A, utilizes more parameters com-
pared to FINER (the best-performing method after ours),
it does not require extensive training time. It is impor-
tant to note that the reported training times correspond to
a fixed number of iterations using optimal hyperparameters
that maximize performance (PSNR) rather than configura-
tions optimized for speed. Time differences between meth-
ods arise from their respective optimal hyperparameter set-
tings. Our primary contribution is the elimination of the
need for manual activation function design, in contrast to
prior approaches. Moreover, as illustrated in Tab. 1, exist-
ing methods utilizing naive learnable activations, such as
KAN [3], suffer from limited scalability and demand sub-
stantial training resources. We effectively address these
limitations by introducing a scalable learnable activation
paradigm that requires only marginally increased parameter
counts while maintaining computational efficiency through
the use of a single learnable activation layer and low-rank
MLPs, which minimize overhead without sacrificing per-
formance. Future research will explore further enhance-
ments aimed at improving network compactness. In the
image representation task (Tab. 3), SL2A achieves compet-
itive training time, considerably outperforming many exist-
ing methods, and remains efficient despite its marginally
higher parameter count. For the occupancy representation
task (Tab. 4), SL2A requires slightly longer training times
compared to FINER but still maintains efficiency within ac-
ceptable bounds. Overall, the complexity analysis indicates
that SL2A remains computationally efficient across tasks,
with slight trade-offs in training time balanced by its supe-
rior performance in representation quality.

6. Single Image Super Resolution

To demonstrate the generalization capability of our ap-
proach, we evaluated it on the task of single image super-
resolution using an image from the DIV2K dataset [9].
Specifically, we trained our architecture for image repre-
sentation and downsampled the original image (with di-
mensions 1356 × 2040 × 3) by factors of 2, 4, and 6 and
evaluated it on the original resolution. The correspond-
ing results, illustrated in Fig. 5, compare super-resolution
reconstructions of a parrot image across multiple ratios.
Our findings indicate that SL2A-INR consistently surpasses
FINER, achieving superior PSNR [2] metrics. Further-
more, SL2A-INR distinctly preserves sharp details and pro-
duces less noisy result images, specifically in 6× settings,
whereas the recent SOTA method FINER produces com-
paratively noisier results. These visual and quantitative im-
provements highlight our method’s effectiveness in achiev-
ing high-quality super-resolution reconstructions and un-
derscore its robustness and adaptability to inverse problems.
We hypothesize that this trend could similarly hold for other
inverse problem tasks involving complex reconstructions, a
direction we plan to explore in future work.

7. Initialization Scheme

As previously mentioned, we employed the Xavier uniform
initialization scheme for our method. Nevertheless, our ap-
proach (SL2A) demonstrates robustness to various initial-
ization schemes. To substantiate this claim, we evaluated
our image representation (Image 00) using multiple ini-
tialization methods, as summarized in Tab. 5. The results
indicate minimal variations in performance across differ-
ent initialization schemes, confirming the robustness of our
method. This characteristic contrasts markedly with typical

Table 3. Comparison of computational complexity across differ-
ent methods for the Image Representation Task.

Method #Params (M)↓ Training Time (min.) ↓

FINER 0.198 0.595
WIRE 0.099 1.713
Gauss 0.198 3.08
SIREN 0.198 0.643
ReLU+P.E. 0.204 3.425
SL2A 0.330 0.77

Table 4. Computational complexity across different methods for
the Occupancy Representation Task.

Method #Params (M)↓ Training Time (min.) ↓

FINER 0.198 42.41
WIRE 0.066 63.03
Gauss 0.198 32.05
SIREN 0.198 27.22
ReLU+P.E. 0.214 39.32
SL2A 0.248 45.59



Figure 5. Results for a single image super resolution compared with FINER.

INR methods, such as SIREN [7], whose performance sig-
nificantly depends on the chosen initialization scheme, of-
ten experiencing notable degradation under suboptimal ini-
tialization.

Table 5. Comparison of various initialization schemes evaluated
on Image 00. Results demonstrate robustness of SL2A, showing
minimal variation across methods, except for the uniform initial-
ization.

Initialization Scheme PSNR

Xavier uniform 33.40
Kaiming uniform 33.22
Kaiming normal 33.12
Orthogonal 33.26
Uniform 31.86
Normal 33.28
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