Fast Globally Optimal and Geometrically Consistent 3D Shape Matching

Supplementary Material

A. More Details on Constraint Matrix

In the following, we provide more details of submatrices P
. . P
and L of our constraint matrix H = { L } .

The matrix P. As mentioned in the main paper, P; can
be represented algebraically via matrix P;. Yet, to account
for degenerate edges (i.e. the extended edge set 5; ), we
have to consider a slightly altered definition of P; which
reads

P=ClfoYt-CraYy". (5)

Here, C;' and C; are the non-negative and non-positive
entries of the vertex edge incidence matrix C; €
{—1,0,1}Ve;ilxI€e;l In contrast to the elaborations in
the main paper, which, as mentioned, neglects degener-
ate edges, YT and Y~ are the non-negative and non-
positive entries of the vertex edge incidence matrix ¥ &€
{-1,0,1}V»xI€] concatenated column-wise with Iy,

and —1I|y,,|, respectively. Thus Y+ and Y~ are defined as

Yyt = [Y+
Y- = [Y’

Ilvyl]7

(6)
~Tjvy] -

With the interpretation that non-zero entries in matrices Y+
and Y~ resemble incoming and outgoing edges at vertices
of ), one can see that appending identities to respective ma-
trices can be interpreted as adding self-edges, i.e. account-
ing for £}, see also Fig. A.1 (i).

The matrix L. As mentioned in the main paper, the def-
inition of P requires columns of the non-positive blocks of
L to be permuted. We can incorporate this permutation by
considering the following alternative definition of L which
reads

L=K'®@Ig —K @I ©)
y Yy

Here Kt and K~ are the non-negative and non-positive
entries of the matrix K € {—1,0, 1}?*1€x! (p is the number
of undirected non-boundary edges of X and K represents
the incidence of opposite edges across all n surface cycles).
Furthermore, I, I£3] is a (column) permuted identity matrix

with all non-positive entries. The column permutation of
1 €3] is such that opposite edges in 5;' can be mapped to
Y

each other via I~\€$|’ i.e.suchthat Y+ = f/_f‘g;l and such
that Y~ =Y +I ...
€3]

B. Detailed Hyper Product Graph Formalism

In this section we provide detailed definitions of the hyper
product graph H which arises from our constraint matrix H.

We provide an overview of the major concepts in Fig. A.1,

where we also visualise the matrix structures of respective
submatrices P, L, and S of H.

B.1. Individual Surface Cycle Matching Subproblems

Each surface cycle C; can be matched to shape ) by finding
a cyclic path in the product graph, which has been intro-
duced in [48] for matching a 2D to a 3D shape, see Defini-
tion 7.

In a nutshell, each vertex v = (5) € Vp, in the prod-
uct graph resembles a (potential) matching between vertices
z € Vy and y € Vy of both shapes. Thus, each edge
(v, ) in the product graph can be interpreted as a (poten-
tial) matching between edges of C; and edges of shape )
(or vertices of ) via the extended edge set Ejf to account
for stretching and compression). With that, matching sur-
face cycle C; to shape ) amounts to solving a cyclic shortest
path problem in the respective product graph P; [48].

However, a major downside for our setting of 3D-fo-3D
shape matching is that the neighbourhood between pairs of
surface cycles cannot be ensured when considering vanilla
shortest path algorithms (that solve the n individual surface
cycle matching subproblems independently). To tackle this,
we couple the individual product graphs P, ..., P, appro-
priately, which we explain next.

B.2. Subproblem Coupling

We couple the individual surface cycle matching subprob-
lems of P; by glueing them together via opposite edges. To
this end, we introduce coupling vertices:

Definition 9 (Coupling vertices). For every pair of opposite
product edges e € Ep, and —e € Ep, we add a coupling
vertex q5;. The set of coupling vertices is Vo = {qf; | e €
57),” —e c g'pj }

The purpose of coupling vertices is that matchings of op-
posite edges are consistent, i.e. so that matchings of surface
cycles cover opposite edges and thus are neighbouring, see
Fig. A.1 (iii). Consequently, this de-facto enforces the glue-
ing, which in turn results in global geometric consistency.

In addition to the coupling, we want to ensure match-
ing injectivity for each edge of surface cycles. Hence, we
need to ensure that each such edge is matched exactly once,
which we tackle next.

B.3. Surface Cycle Matching Injectivity

We want to enforce that each surface cycle edge is matched
exactly once, i.e. it is matched to exactly one edge (or ver-
tex) of ). In other words, among all the potential match-
ing candidates of a single surface cycle edge, exactly one is
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Figure A.1. Visualisation of the involved graph structures (top) and respective vertex-edge incidence matrices (bottom): (i) for an
individual subproblem product graph P;, (ii) for two (uncoupled) subproblem product graphs P;, P;, and (iii) for two coupled subproblems
leading to the hyper product graph . We note that in (iii) we illustrate two directed hyper edges (which have multiple source and target
vertices, see thick coloured lines ==,==) of our hyper product graph #. These hyper edges of H contain source and target vertices of product
edges (see middle) in their respective sets of source and target vertices. Furthermore, each hyper edge additionally contains a vertex

qi; € Vc inits set of source and target vertices (so that opposite product edges are coupled, see green dot

). Finally, each hyper edge

contains an injectivity vertex Sz, Sz= € Vs in its set of source vertices (so that each edge of the surface cycles is matched exactly once,

see blue dots ().

part of the final matching. For that, let us denote the set of
all edges (in the product graph) that are potential matching
candidates of the edge (z,Z) € &, as the edge bundle of
(z, ). For each such edge bundle, we introduce one injec-
tivity vertex (see Fig. A.1 (iii) as well as Fig. 4), which has
the purpose to ensure that only a single edge of each edge
bundle is part of the final matching:

Definition 10 (Injectivity vertices). For every directed edge
(x,Z) € Ex of shape X we introduce one injectivity vertex.
The set of injectivity vertices is Vs = {s,z | (z,T) € Ex}.

B.4. Resulting Hyper Product Graph

Finally, we present our directed hyper product graph .
We note that in contrast to ordinary edges (which have
exactly one source and one target vertex), a directed hy-
per edge denoted as vy, va, ... —> U3, vy,...] has a ser of
source vertices {vi,vs,...} and a set of target vertices
{1)37 V4, ... } [33]

Our hyper graph has two different types of hyper edges,
coupled and uncoupled ones. The coupled hyper edges refer
to hyper edges that belong to non-boundary edges of X and
serve the purpose of enforcing neighbourhood preservation
between surface cycles:

Definition 11 (Coupled hyper edges). The set of coupled

hyper edges is defined as

57‘[ = { [[’U,S;mz - 67ijﬂ ) [[1_)7576367qze_] - U]] Sz, Sz € VS7

65 € Ve, o= (0,0) = (), (5)) € Epis e € Ep, }.
@®)

From above definition we can see that one coupling ver-
tex always connects exactly two hyper edges. The uncou-
pled hyper edges refer to hyper edges that belong to bound-
ary edges of X’ and with which we can account for partiality
of the source shape X':

Definition 12 (Uncoupled hyper edges). The set of uncou-
pled hyper edges is defined as

éH :{Hvaswi _DT}]] |U: (5)3 v = (%)7 Sxz €V$7
(x,%) € Ex is boundary edge, (y,7) € 5;}
€))

This gives rise to our hyper product graph, which we also
visualise in Fig. A.1 (iii):

Definition 13 (Hyper product graph). Our hyper product
graph H = (Vy,E3) for matching the source shape X



(represented with n surface cycles) to the target shape )
comprises the vertex set V4, and the set of (directed) hyper
edges 4, and is defined as

Vyu=Vp, U...UVp UVs UV,

~ R (HPG)
Eq=ExqUEy with m = |57.[|

C. Practical Considerations

In this section, we discuss the implementation of the dis-
tortion bound as well as the problem size reduction of our
linear program (GeCo3D). Furthermore, we discuss differ-
ent choices of surface cycles.

C.1. Distortion Bound

Our hyper product graph H already allows to map edges of
X to vertices and edges of ). Thus, our formalism already
accounts for shrinking and stretching. Yet, for more flexi-
bility, we want to additionally allow for matchings of edges
of Y to vertices of X'. To this end, we integrate a distortion
bound by creating k duplicates of vertices of every prod-
uct graph P;. We connect the duplicates such that resulting
product edges resemble edge to edge, edge to vertex or ver-
tex to edge matchings between shapes A" and )/, see also the
product graph definition in [48] and Fig. A.2 for a visualisa-
tion of additional product edges. This effectively allows for
at most k consecutive edges of ) to be matched to a vertex
of shape &' (in addition to the already allowed matchings
between edges of X" and edges or vertices of ). In all ex-
periments we set k = 2. We note that similar concepts have
been used for image segmentation, see [74, Section 7.1.2].

C.2. Reduced Problem Size

For improved solver runtimes we reduce the problem size of
(GeCo3D) by approximately 50%. To this end, we resolve
coupling constraints during construction of matrix H (these
effectively ensure that two variables hold the same value
during optimisation and thus we only need to consider ap-
proximately 50% of the variables). In Fig. A.3 we show an
example of full-sized matrix H for the problem of match-
ing two tetrahedron and furthermore, in Fig. A.4, we visu-
alise the resulting smaller matrix for the same problem of
matching two tetrahedron. We emphasise that problem size
reduction, as described above, does not prune the problem
but rather describes (GeCo3D) with a smaller but equiva-
lent optimisation problem. In other words, a solution to the
reduced problem yields a uniquely defined solution to the
larger problem.

C.3. Other Choices of Surface Cycles

As mentioned in the main paper, we assume that each sur-
face cycle represents a single triangle of X'. We note that a
single surface cycle can represent the boundary of polygo-
nal patches of shape X that contain multiple triangles. Yet,
in this case, the union of vertices of all surface cycles might

Figure A.2. Visualisation of a product graph with distortion bound
k = 0 (top) and with distortion bound £ = 2 (bottom). The
distortion bound k € 27 is achieved by duplicating product ver-
tices k times (duplicates are visible when comparing top and bot-
tom graphs). We connect duplicated product vertices such that: (i)
all duplicates of the same group of product vertices (e.g. all ver-
tices within greenish circles @) are connected (see dashed black
arrows resembling potential matchings of edges of ) to vertices
of X) and (ii) k — 1 duplicates as well as the original vertices of
the same group are connected to k — 1 duplicates as well as the
original vertex of the subsequent group (see solid black arrows at
bottom figure which connect vertices in greenish circles @ with
vertices in yellow circles () and which resemble potential match-
ings of edges of X and edges or vertices of )). We note that we
only allow for distortion-bounds of integer multiples of 2 (so that
neighbouring product graphs can still be coupled).

not contain all vertices of shape X, so that one would have
to adjust the notion of geometric consistency in Definition 4
accordingly.

D. Additional Experiments

In this section, we provide additional results for shape
matching and planar graph matching.

D.1. Shape Matching

Ablation Studies. In Tab. 5, we conduct ablation studies
of our method. To this end, we use 10 pairs from FAUST
dataset, decimate shapes to 500 triangles and evaluate mean
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Figure A.3. For the matching of two tetrahedron shapes (top) we show the resulting H matrix (bottom). In light red and light blue we
indicate the blocks of H, where within each block there is exactly one non-zero element per column.

geodesic errors in different settings. We consider our for-
malism (GeCo3D) with and without coupling constraints
(i.e. without coupling constraints means that we only con-
sider constraints Px = 0 and Sx = 1 and drop the con-
straints Lz = 0). Furthermore, we use different methods to
compute features: wave kernel signatures (WKS) [3], fea-
tures based upon image foundation models which we call
Diff3F [22] (we note that we use an empty text prompt
for feature extraction with Diff3F) and features computed

with deep feature extractor ULRSSM [13]. For all types of
features, our coupling constraints help to improve results.
This shows the importance of priors induced by global ge-
ometric consistency. Overall, we obtain best results with
features computed with ULRSSM [13] (which is the fea-
ture extractor that we use for our method for the rest of
our shape matching experiments). Additionally, we eval-
uate our methods performance to shapes with different dis-
cretisation. We fix one shape to 1000 triangles, vary the
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Figure A.4. We show the reduced matrix structure after resolving coupling constraints for the same matching problem of matching two

tetrahedron as shown in Fig. A.3.

Method \ Mean Geodesic Error
Ours (no coupling) + WKS [3] 0.2335
Ours + WKS [3] 0.2253
Ours (no coupling) + Diff3F [22] 0.1105
Ours + Diff3F [22] 0.0511
Ours (no coupling) + ULRSSM [13] 0.0318
Ours + ULRSSM [13] 0.0316

Table 5. Ablation studies conducted on ten pairs of FAUST
dataset. We consider different methods to compute features and
furthermore consider our method with and without coupling con-
straints. Using coupling constraints improves results for all types
of features. Using features computed with ULRSSM [13] yields
best results overall.

resolution of the other shape and plot mean geodesic errors
in Fig. A.5 of five instances from FAUST. We can see that
our method performs reasonably under varying shape dis-
cretisation.

Memory Footprint of Constraints. In Tab. 6, we com-
pare the memory footprint of our method to other geomet-
rically consistent approaches. Our has the lowest memory
requirements.

Discretisation: FAUST
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Figure A.5. Evaluation of the performance of our method under
varying discretisation. We fix the resolution of one shape to 1000
triangles and vary the resolution of the other shape.

Runtime. In Fig. A.6, we compare runtimes of off-
the-shelf linear programming solvers Gurobi [37] and
Mosek [1]. Plotted curves are median runtimes of five pairs
of FAUST dataset. We can see that Mosek [1] scales poor
compared to Gurobi [37].

Full Shape Matching. We show error plots of geodesic
errors in Fig. A.8 and Dirichlet energy plots in Fig. A.9.
Furthermore, we show additional qualitative results, includ-



# Faces ‘ Windheuser et al.  SpiderMatch Ours

500 0.2GB 0.2GB 0.1 GB
1000 0.8 GB 1.0 GB 0.3 GB
1500 1.8 GB 22GB 0.7 GB
2000 3.1GB 4.0 GB 1.2GB

Table 6. Comparison of the memory footprint of the constraint
matrices of Windheuser et al. [89], SpiderMatch [67] and our ap-
proach.

Runtime Comparison: FAUST
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Figure A.6. Runtime comparison of off-the-shelf linear program-
ming solvers Gurobi [37] and Mosek [1] when solving linear pro-
gram (GeCo3D) with varying resolution of input shapes. Curves
are median runtimes over five pairs from FAUST dataset.

Metric ‘ ULRSSM  SpiderMatch  Ours
Mean geodesic errors ({) 0.071 0.066 0.062
Mean Dirichlet energies ({) 1.262 0.613 0.444

Table 7. Quantitative results for partial-to-full shape matching
on the SHREC’16 cuts [17] dataset for ULRSSM [13], Spider-
Match [67] and our method.

ing results for methods by Ren et al. [62] and Eisenberger et
al. [28] in Fig. A.7.

Partial-to-Full Shape Matching. In Fig. A.10, we show
more qualitative results computed with our method for the
partial-to-full shape matching setting and furthermore in
Tab. 7 we report quantitive results on SHREC’16 [17].

D.2. Planar Graph Matching

In Fig. A.11, we show more graph matching examples of in-
stances of WILLOW [16] dataset. We furthermore note that
we only consider the graph matching problem as a proof-
of-concept experiment and that we use pixel-coordinates of
vertices of respective graphs as input features. We leave the
integration of more elaborate features, when our method is
applied to graph matching, to future works.
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Figure A.7. Additional qualitative shape matching results on datasets DT4D-H (columns (1)-(5)), FAUST (columns (6)-(9)), and SMAL
(columns ({0-(2). Columns (1), 3), 5, (6), (9), (0 are also shown in the main paper and are repeated here for comparison with methods
DiscrOpt [62] and SmoothShells [28]. All matchings are visualised by transfering colour and triangulation from source to target shape. In
column (), we can see a failure mode of ours very likely caused by the fact that our solution space still contains matchings which allow
for inside out flips (one side of the leg is matched to the other side of the leg).
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Figure A.8. Quantitative shape matching results on datasets FAUST, SMAL, DT4D Intra and Inter and BeCoS. We show percentage of
correct points (1) w.r.t. geodesic error thresholds (i.e. this quantifies if a matched point is within a geodesic threshold radius around ground
truth point). Numbers in legends are mean geodesic errors ({). Across all five datasets our method performs the best, very likely due to
enforced geometric consistency.
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Figure A.9. We show percentage of matched points (1) which are below a certain Dirichlet Energy threshold on datasets FAUST, SMAL,
DT4D and BeCoS. Numbers in legends are mean Dirichlet energies across all pairs (). Our method consistently yields best results on all

datasets very likely since it is the only method enforcing global geometric consistency.



Figure A.10. More qualitative results computed with our method
for partial-to-full shape matching on test set shapes [27] from
SHREC’16 [17].
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Figure A.11. More planar graph matching results using our
method. For the cars in the top row we can see matching arte-
facts stemming from graph connectivity differences and enforced
geometric consistency (see vertices connected with red line).
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