CATSplat: Context-Aware Transformer with Spatial Guidance
for Generalizable 3D Gaussian Splatting from A Single-View Image

Supplementary Material

Overview

In this supplementary material, we provide further expla-
nations and visualizations of our main paper, “CATSplat:
Context-Aware Transformer with Spatial Guidance for Gen-
eralizable 3D Gaussian Splatting from A Single-View Im-
age”. First, we elaborate on the specifics of our user study
(Sec. 1). Then, we present additional technical details on
the CATSplat architecture (Sec. 2). Also, we describe the
implementation and datasets in more detail (Sec. 3). More-
over, we provide more quantitative and qualitative experi-
mental results to further validate the robustness of CATSplat
for 3D reconstruction and novel view synthesis (Sec. 4). We
finally discuss the limitations and future directions (Sec. 5).

1. User Study Details

We conduct a user study to validate our method from the
perspective of human perception, as described in Sec.4.4 in
the main paper. Through Amazon Mechanical Turk (AMT),
a widely used platform for user studies, we recruited 100
participants. We randomly sample 60 scenes from the
RE10K [19] evaluation set and 20 from the ACID [7] evalu-
ation set. Then, we use rendered images from these sampled
scenes for the survey questions. With rendered images and
corresponding ground truth target images, we ask two types
of questions, as shown in Fig. 1. For the first type of ques-
tion, we show two rendered images, one from CATSplat
and the other from Flash3D [15], along with a target image,
and ask, “Which of the two images predicts the target image
better in terms of visual quality, such as object appearance,
shapes, colors, and textures?”. For the second type of ques-
tion, we request participants to rate the visual quality of the
rendered image from either method (CATSplat or Flash3D)
on a 7-point Likert scale, with the question, “How good is
the quality of the rendered image compared to the target
image?”. We also include control questions to verify the
reliability of responses from each participant by displaying
the ground truth image as the rendered image and asking
participants to rate it based on the same ground truth image,
where the results are expected to be obviously high. More-
over, the method names are anonymized and presented in
random order to minimize bias. We finally gathered 9,000
responses on RE10K and 6,000 responses on ACID (i.e., 30
questions for type one and 30 rating questions for each CAT-
Splat and Flash3D on RE10K, as well as 20 questions for
type one and 20 rating questions for each on ACID). Given
responses from all participants, we report scores with 95%

confidence intervals, as shown in Tab.7 of the main paper.
Specifically, for the first type of question, which requires
participants to choose between two rendered images, we
utilize a binomial proportion confidence interval to analyze
preferences. In the case of the second type, which queries
to rate the visual quality of a single rendered image, we use
a normal distribution confidence interval to analyze the av-
erage rating score. Ultimately, the results underscore the
superiority of our method, as CATSplat is notably preferred
and receives higher ratings compared to the latest method.

[Question 19]

The image on the left is the target image, and the two images next to it are
Al-predicted images to resemble the target image.

Which of the two images predicts the target image better in
terms of visual quality, such as object appearance, shapes,
colors, and textures?

[Question 43]
The image on the left is the target image, and the image next to it is the Al-
predicted image to resemble the target image.

How good is the quality of the predicted image compared to the
target image?

1: 1 can barely tell what the image is!
7: The image just looks like the target image!

Predicted Image

Figure 1. Examples of two types of user study questions. The first
type of question (above) asks about preference between ours and
Flash3D [15], and the second (below) requires participants to rate
the visual quality of the rendered image compared to the target.

2. Architecture Details

2.1. Details on 3D Point Feature Extraction

As described in Sec 3.3 in the main paper, we advocate in-
corporating 3D priors from 3D point features, which con-
tain more comprehensive 3D domain knowledge than 2D
depth maps, to address limited geometric information in-
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Figure 2. Detailed architecture of 3D point feature extraction from a monocular input image Z. Our point cloud encoder takes back-
projected points P and produces point features F'* based on the PointNet [10] structure. Here, T-Net indicates an affine transform network.
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Figure 3. Examples of input images with their corresponding esti-

mated depth maps and back-projected 3D point clouds. For better
visualization, we also present 3D point clouds with RGB colors.

herent in single-view settings. In this section, we provide
additional explanations on the procedure of producing 3D
point features from a single source image. As illustrated in
Fig. 2, our approach first extracts a pixel-wise depth map
D e R*W>L from an input image Z € R¥*W*3 using
a pre-trained monocular depth estimation model [9]. Next,
we back-project D into a 3D point cloud P € R7*Wx3
with the corresponding camera parameters K € R3*3,
Then, a point cloud encoder takes P to yield point features
FS € RN-*D? Here, we organize our point cloud encoder
based on the prevalent PointNet [10] architecture. Given
the points P, we sample N points using the Farthest Point
Sampling (FPS) [2] algorithm; then, these sampled points
P’ € RN=*3 are processed through a series of joint align-
ment networks and MLP layers. The first alignment net-
work maps the sampled points P’ to a canonical space, and
the second aligns intermediate features F'S € RN<*64 0 a
joint feature space. Both networks employ an affine trans-
form matrix predicted by the T-Net. Finally, we produce 3D

point features FS e RNsxD S, where D denotes 1,024. In
Fig. 3, we present examples of input images Z, along with
their corresponding depth maps D and back-projected 3D
point clouds P (+ w/ RGB), to help understand our process.

2.2. CATSplat Procedure

In Algorithm. 1, we present the overall workflow of our gen-
eralizable feed-forward network, incorporating two novel
priors, for 3D scene reconstruction from a single image.

Algorithm 1: 3D scene from a single-view image.

Input: A monocular image Z € R xWx3
Result: Novel view images 7, € RE*Wx3
Procedure:
1 Estimate Depth Map D from 7.
2 Concatenate Z and D as 7'.
3 Extract multi-resolution image features F'Z from Z'.
4 Produce text features F/C based on the VLM.
5 Back project D into 3D points P.
6 Produce 3D point features F;° from P.
# Multi-resolution Transformer with N layers.
7 for i =11t N, do
# Incorporation of Contextual Cues.
8 QZ)KlavzzquZIa Wk'Fica Wv'FiC
9 FZIC = Attn(Q“K“Vi)
# Incorporation of Spatial Cues.
10 ;7K;,V§=W4-ch7 W, -F?, W, FS
u | FFO = Atn(Q), K., V1)
# Add and Normalization.
12 | FX¢% = Norm(F} + ~ Dropout(FXC5))
# Self Attention.
Qi K;, V, = W,-FFCS W, . FF¢S W, . FFCS
13 FZI = Attn(Ql, KZ', Vl)
14 end
# 3D Scene Reconstruction and Novel View Synthesis.
15 Predict J Gaussians {(p;, o, ;, ¢;)}/ from FZ.
16 Render Z; images with rasterization function.




3. Experimental Setup
3.1. Datasets

RealEstatel0K. The RealEstate10K [19] dataset consists
of large-scale home walkthrough videos from YouTube,
including approximately 10 million frames from around
80,000 videos. It also provides camera parameters for each
frame calibrated using the Structure-from-Motion (SfM)
software. We follow the standard training and testing split,
with 67,477 scenes for training and 7,289 for evaluation.

NYUv2. The NYUvV2 [13] dataset provides video se-
quences from diverse indoor environments captured using
Kinect cameras. In line with [15], we employ 250 source
images from 80 scenes for cross-dataset evaluation and ran-
domly sample target frames within a 30 frame range from
the source, following the random protocol of RE10K [19].
For camera trajectories, we use SfM software as RE10K.

ACID. The ACID [7] dataset consists of large-scale natu-
ral landscape videos captured by aerial drones. Like the
REI10K [19], ACID provides camera parameters for frames,
which are calculated via SfM software. For cross-dataset
evaluation, we utilize 450 source images from 150 scenes
and randomly sample target frames within a +£30 frame
range from the source as the random protocol of RE10K.
Note that we evaluate and visualize Flash3D [15] on ACID
using publicly available code and provided checkpoints.

KITTI. The KITTI [3] is a landmark autonomous driving
dataset containing 30 city driving sequences. Following
the well-established evaluation protocol from Tulsiani et al.
[17], we utilize 1,079 source frames and provided corre-
sponding camera parameters for cross-dataset evaluation.

3.2. Scale Handling

For training on the RealEstate10K [19], we employ the
StM [12] strategy of COLMAP to estimate camera poses
for images and align them with the estimated depth maps
using the scale alignment process from Tucker et al. [16].
While this approach is generally reliable, it does not assure
perfect alignment between the reconstructed scene scale and
novel view camera pose scale due to occasional outliers in
the predictions. Hence, when evaluating on RealEstate 10K,
ACID [7], and NYUv2 [13], we apply RANSAC to address
such outliers, ensuring more robust scale handling. For the
KITTI [3] dataset, we use the provided poses for evaluation.

3.3. Implementation Details

Our experimental setup is built on the prevalent deep learn-
ing framework, PyTorch. For image processing, we utilize
the ResNet-50 [4] encoder and the UniDepth [9] pre-trained
model for monocular depth estimation, with a single-view
image size of 256 x 384. We employ LLaVA [8] 13B for
text embeddings and extend the PointNet [10] encoder for
extracting point features. Note that we precompute text

embeddings to optimize training efficiency by minimizing
computational overhead. Our multi-resolution transformer
comprises three layers with 8-headed attention, leveraging
three different resolution image features to effectively cap-
ture both global structures and fine details. We also set the
ratio v as 0.5 to strike a balance, preventing excessive loss
of core visual information from image features while inte-
grating our two novel priors. Then, our offset decoder pre-
dicts two sets of depth offsets and 3D offsets for vivid scene
representation. We train and evaluate on a single A100 GPU
and select the best model upon convergence. Specifically,
we optimize a combination of L1, Lgim, and Lipips losses
using the Adam optimizer with each coefficient as Ayp1=1,
Assim=0.85, and Ajpips=0.01, respectively.

3.4. Computational Analysis

In Tab. 1, we compare the training and inference times of
ours with Flash3D [15] on a single A100 GPU. For precise
examination, we synchronize CUDA events across all oper-
ations, as they are typically asynchronous per process. Al-
though CATSplat requires additional six hours (29.1 hrs) of
training compared to Flash3D (23.2 hrs), the impact on in-
ference time remains relatively minimal, increasing by only
0.066 secs. In terms of model parameters, CATSplat (72M)
is 30% larger than Flash3D (54M) due to the transformer ar-
chitecture, which introduces additional weight matrices and
trainable layers. Despite the slightly higher computational
costs, CATSplat consistently outperforms Flash3D across
multiple benchmarks by employing two valuable guidance.

n = Random (frames)

Method Training (hrs) Inference (secs)

PSNR1 SSIM1 LPIPS |
Flash3D [15] 23.2 0.327 24.93 0.833 0.160
CATSplat (Ours) 29.1 0.393 2545 0.841 0.151

Table 1. Comparison of computational costs with the state-of-the-
art single-view 3DGS method, Flash3D [15], on the RE10K [19].

4. Additional Experiments
4.1. Ablation Studies in Cross-dataset Settings

In this section, we validate the effectiveness of our two in-
novative priors through ablative experiments across cross-
dataset settings. In Tab. 2 and Tab. 3, we evaluate variants of
our method, with/ and w/o Contextual and Spatial priors, on
the NYUv2 [13] and ACID [7] datasets, respectively. The
Baseline denotes our basic transformer architecture, exclud-
ing cross-attention with any of our proposed priors.

First, incorporating contextual cues leads to significant
improvements, both for indoor scenes (NYUv2) and out-
door nature scenes (ACID). With text embeddings from a
well-trained visual-langualge model (VLM) [8], our net-
work learns not just basic object types or scene seman-
tics but also deeper context, such as how objects relate to
each other or the overall scene structure. In other words,



Method n = Random (frames)
Baseline Contextual Spatial PSNR1T SSIM?1 LPIPS |
v - - 25.11 0.775 0.178
v v - 25.51 0.779 0.163
v - v 25.48 0.778 0.165
v v v 25.57 0.781 0.157

Table 2. Ablation study to investigate the effect of our two intelli-
gent priors on the NYUv2 [13] dataset in cross-dataset settings.

Method n = Random (frames)
Baseline Contextual —Spatial PSNR1 SSIM?1 LPIPS |
v - - 24.26 0.732 0.261
v v - 24.57 0.735 0.253
v - v 24.62 0.737 0.254
v v v 24.73 0.739 0.250

Table 3. Ablation study to investigate the effect of our two intelli-
gent priors on the ACID [19] dataset in cross-dataset settings.

we take advantage of text embeddings to provide compre-
hensive general knowledge of dynamic real-world environ-
ments as well as scene-specific details. As a result, even
in unfamiliar scenarios without familiar scene types or ob-
jects, text-embedded general cues serve as guiding anchors,
enabling our network to better apply trained knowledge.
Additionally, by incorporating spatial guidance, our ap-
proach boosts generalization performance on both datasets.
Beyond the geometric cues from 2D depth maps, we guide
our network to be aware of three-dimensional domains,
more associated with 3D Gaussians, through 3D point fea-
tures. Based on deep spatial understandings, our network
effectively reconstructs 3D scenes with accurate Gaussians,
even in complex, unfamiliar environments. Finally, com-
bining all priors together achieves further advances, seam-
lessly complementing limited knowledge from single-view
image features. In addition to Tab.4 in our main paper, these
results demonstrate the significance of our two novel priors.

4.2. Discussion on Text Descriptions

For rich contextual cues, we leverage text embeddings from
a well-trained VLM [8]. Specifically, we prompt the VLM
to generate text descriptions for the input image; then, we
utilize intermediate text embeddings before they are pro-
cessed into linguistic descriptions. To discover the optimal
text embeddings, we investigate the impact of contextual in-
formation within different types of text embeddings on gen-
eralizability in Tab.5 (main). For comparison, we conduct
experiments with four different styles of prompts: identi-
fying the scene type, listing objects, describing the scene
with a detailed single sentence, and two or more extended
sentences. We provide examples of text description outputs
using these prompts in Fig. 4. Usually, a single sentence
captures comprehensive details for the scene, including tex-
tures (e.g., “wooden”, “leather”), object relationships (e.g.,
“on the countertop”, “surrounded by chairs”, “large mir-

Extended Sentence

Input Image

Scene Type Single Sentence

A Kitchen with
a countertop,
a refrigerator

A kitchen
The image depicts a clean

: Object List and well-lit kitchen with a
'R

on the left center island. The overall
side, a atmosphere of the kitchen
Countertop, microwave, and is organized and inviting.
refrigerator, a vase with The Kitchen is equipped
microwave, flowers on the with various appliances, ...
vase countertop.
S / \ J
s N
A dining A dining room The image depicts a cozy
room with a dining room with a wooden
wooden dining table and chairs. The table
Wooden table is surrounded by chairs,
dining surrounded two people are present
table, by chairs and inside the home, possibly
chairs, a potted guﬂwe.ring ‘For a meal or
potted plant on the spend!ns time together.
plant outside. The dining room...

J J

r \
A bathroom A bathroom The image s_hows a white
q q bathroom with a clean
with a white
and neat appearance. The

Y N toilet sitting
along a wall bathroom features a
Bathroom ! bathroom sink, with a
: nd a bathroom .
sink, a si:k v‘:ifh oao brown marbled
toilet, large mirror countertop, above the
large 9 . toilet, there is a sign that
mirror above it. N "
reads "lucky numbers.”, ...
. AN J
r \
A living A living room The image features a
room with a black warm and cozy living room
leather that house two
chair in paintings, adding an
Black front of a artistic touch to the
chair, flat screen space, a flat screen
ﬂéf_ television, television, and a green
television, and pictures plant. There is also a
pictures on the wall. couch with a chair ...
CIN AN J

Figure 4. Examples of four different formats of text descriptions
from the VLM [8], as described in Tab.5 in the main paper.

ror above it”), and overall composition (e.g., “on the left
side”, “on the outside”), surpassing simple cues like scene
type or object list. However, extended sentences often intro-
duce exaggerated or fabricated elements, such as overly in-
terpretive moods, atmospheric descriptions with excessive
adjectives (e.g., “organized and inviting”, “adding an artis-
tic touch”), or entirely false specifics (e.g., “two people are
present inside the home..”, “lucky numbers..”). These noisy
overstatements hinder the network from learning meaning-
ful context information of the text embeddings, resulting in
relatively lower performance than using a single sentence.
Ultimately, in this work, we employ a single sentence to en-
hance image features with practical contextual information.

4.3. Text Embeddings from Various VLMs

Contextual cues from text embeddings are one of our core
methods to break through the inherent constraints in monoc-
ular settings. Thus, identifying the most effective text em-
beddings is crucial for achieving high-quality single-view
3D scene reconstruction. In Tab. 4, we explore how text em-
beddings from various pre-trained VLMs, including Open-
Flamingo [1], BLIP2 TS5 [6], LLaVA 7B [8], and LLaVA
13B, influence performance on the RE10K [19]. For a fair
comparison, we prompt all VLMs to produce a single sen-
tence scene description. Then, we use intermediate text em-
beddings from each VLM. Even with similar prompts, each
model generates distinct structures of text descriptions. For
example, OpenFlamingo tends to produce relatively unsta-
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Figure 5. Ablation study to see the effect of iteratively incorporating our novel priors on the RE10K [19] (n=Random). For clear ablations,
we keep the number of entire transformer layers consistent across the experiments and adjust only the number of cross-attentions (CA).

n = 10 (frames) n = Random (frames)

Method PSNR1 SSIM? LPIPS| PSNR{ SSIM? LPIPS |
OpenFlamingo ~ 26.08 0858  0.131 2506 0832  0.158
BLIP2 TS 2629 0860 0129 2527 0833  0.156

LLaVA 7B 26.19 0.861 0.129 25.23 0.834 0.156
LLaVA 13B 26.40 0.864 0.127 25.40 0.838 0.153

Table 4. Ablation study to see the impact of text embeddings from
different VLMs: OpenFlamingo [1], BLIP2 [6], and LLaVA [8].

ble text descriptions with redundant or exaggerated infor-
mation, providing minimal benefit for scene reconstruction.
Meanwhile, BLIP2 and LLaVA 7B generate monotonous
text descriptions that primarily focus on object and scene
types. On the other hand, LLaVA 13B yields more infor-
mative text descriptions with useful details, such as textures
(e.g., “wooden”, “leather”), object relations (e.g., “on the
countertop”, “surrounded by chairs”, “large mirror above
it”), and scene composition (e.g., “on the left side”, “on
the outside”), as illustrated in Fig. 4. Finally, we leverage
text embeddings from the well-aligned multimodal space of
LLaVA 13B for context-aware 3D scene reconstruction.

4.4. Iteratively Incorporating Priors

We present additional ablative experimental results to high-
light the benefits of iteratively incorporating our priors in
Fig. 5. Consistent with the settings in Fig.5 (main), we ran-
domly sample the target frame within a +30 range; also,
fix the total number of transformer layers at three and apply

cross-attention either in the first layer only, across two lay-
ers, or throughout all three layers. Through iterative cross-
attention between image features and our priors, blurry arti-
facts gradually fade, sharpening the object contours and en-
hancing clarity in images. Simultaneously, errors between
rendered images and target images also steadily decrease.
In essence, iterative incorporations of our novel priors lead
to noticeable improvements in overall visual quality. These
results emphasize both the importance of our priors and the
structural robustness of our transformer-based architecture.

4.5. Comparisons with Various Approaches

In addition to comparing our method with monocular novel
view synthesis (NVS) approaches, we evaluate ours against
various types of NVS methods to further highlight its ef-
fectiveness. For a fair comparison, we assess all methods
on unseen scenes in cross-dataset settings across ACID [7]
and NYUvV2 [13] datasets. First, we compare ours with
MASt3R [5] and Splatt3R [14], both optimized for pro-
cessing stereo image pairs in 3D scene reconstruction.
MASTt3R relies on feature-based matching between image
pairs, and Splatt3R extends MASt3R by incorporating addi-
tional prediction heads to directly estimate Gaussian primi-
tives. While both methods excel in 3D reconstruction with
two images, they tend to produce relatively blurry results in
monocular settings due to their inherent dependence on dual
inputs. MoGe [ 18] extracts high-level features from a single



Ground Truth

[i I
-ll :

5 3E50 1 P

@ 3 e

Figure 6. Qualitative comparisons with various novel view synthesis approaches, including MASt3R [5], Splatt3R [14], MoGe [18], and
ZeroNVS [11]. All methods are fairly evaluated on unseen scenes in cross-dataset settings across ACID [7] and NYUv2 [13] datasets.

Flash3D (Depth) Gaussians  Ours (Depth)  Gaussians

Ground Truth

Figure 7. Qualitative comparisons of 3D reconstruction between
Flash3D [15] and ours with Ground Truth. We visualize zoom-in
views of 3D Gaussian distributions and depth maps from them.

image and regresses these features into 3D point maps for
3D scene reconstruction. However, as shown in the fourth
column, unlike ours, which represents the 3D scene using
continuous 3D Gaussians, the use of 3D points often results
in large gaps in the outlines of objects from novel view-
points. Moreover, ZeroNVS incorporates [11] diffusion
processes based on NeRF architecture to construct detailed
3D scenes from a single image. Although it achieves high-
quality novel view images, combining diffusion with NeRF-
based volume rendering demands significantly higher com-
putational costs (& 3 hrs). On the other hand, CATSplat effi-
ciently reconstructs solid scenes for novel viewpoints using
explicit 3D Gaussian distributions in a single forward pass.

4.6. Additional Comparisons with Flash3D

In addition to comparing rendered RGBs, we qualitatively
assess the quality of 3D Gaussians for scene representation.
In Fig. 7, ours predicts clearer Gaussians than Flash3D [15],
which exhibits messy artifacts. Our excellence is also evi-
dent in the depth maps produced by these 3D Gaussians.

Input Image Rendered Image

Ground Truth

S—

Figure 8. Failure cases of CATSplat. When invisible areas in the
input become visible in the target, ours might be less productive.

We present more qualitative comparisons with Flash3D on
the RE10K [19] (Fig. 9 and Fig. 10) as well as ACID [7]
(Fig. 11) and KITTTI [3] (Fig. 12) in cross-dataset settings.

5. Limitations and Future Work

Although CATSplat shines in monocular 3D scene recon-
struction with two additional priors, it does not ensure per-
fect novel view synthesis across all real-world scenarios.
Depending on dynamic camera movements, when regions
that are occluded, truncated, or even entirely missing in the
input image appear in the target view, ours might be less
effective. For example, in Fig. 8, when previously unseen
elements, like green plants absent in the input, emerge in the
target view (Scenel) or when areas of the bathroom, once
hidden behind a door, become visible (Scene2), our model
struggles to reconstruct these newly revealed parts. In the
future, we plan to explore involving generative knowledge
to better handle these unseen regions in monocular 3D
scene reconstruction. Moreover, we believe that training
the model on a broader range of datasets will strengthen its
general understanding of challenging natural environments.
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Figure 9. Qualitative comparisons between Flash3D [15] and Ours with Input Image and Ground Truth on the RealEstate10K [19] dataset.
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Figure 10. Qualitative comparisons between Flash3D [15] and Ours with Input Image and Ground Truth on the RealEstate 10K [19] dataset.
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Figure 11. Qualitative comparisons between Flash3D [15] and Ours with Input Image and Ground Truth on the ACID [7] dataset.
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Figure 12. Qualitative comparisons between Flash3D [15] and Ours with Input Image and Ground Truth on the KITTI [3] dataset.
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