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Loss Weight Selection
The loss weights λ1, λ2, and λ3 were selected to balance the
contributions of the segmentation, DensePose, and binary mask
losses, respectively. To ensure all loss terms operate on a compa-
rable numerical scale, we first computed the typical magnitude of
each loss on a held-out validation set and then scaled the corre-
sponding λ accordingly. The final values used in our experiments
were λ1 = 0.01, λ2 = 1, and λ3 = 1.

Runtime Comparison
To contextualize the efficiency of our approach, we report end-to-
end runtimes on a representative 4-view input of a 3-person scene
(EgoExo4D-style setup). All measurements were performed on a
single NVIDIA V100 GPU.
HSfM uses a multi-stage optimization pipeline with external tools,
each adding to the total runtime. In contrast, HAMSt3R is a uni-
fied, feed-forward architecture with optional SMPL fitting used
only for evaluation.

Despite being a unified feed-forward model, HAMSt3R re-
mains highly efficient compared to modular pipelines such as
HSfM. SMPL fitting is performed only as a post-processing step
for evaluation.

Table 7. Runtime comparison for HAMSt3R and HSfM in a
4-view, 3-person scene. HAMSt3R is significantly faster despite
producing comparable or stronger results.

Method Total Runtime (4-view)

HAMSt3R (Ours)
Reconstruction + Segmentation + DensePose ∼14s
SMPL Fitting (post-process) ∼6s
Total ∼32s

HSfM [41]
2D Pose Initialization ∼1s
Segmentation (SAM [47]) ∼2s
3D Reconstruction (DUSt3R [64]) ∼18s
Stage 1 (Translation & Scale Only) ∼25s
Stage 2 (Add Global Orientation & Align DUSt3R) ∼48s
Stage 3 (Add Local Body Pose) ∼24s
Total ∼118s

Monocular Prediction
HAMSt3R can also be run on a single image, by simply feeding
the same image twice to the network. We show some qualitative
results on in-the-wild images in Figure 6.

Failure Cases in SMPL Fitting
While HAMSt3R is generally robust, we observe occasional fail-
ures in SMPL fitting, especially when subjects are far from the
camera. In such cases, the 3D points are sparse and noisy, leading
to unstable optimization (Figure 7).

We hypothesize that increasing reconstruction resolution or in-
corporating additional priors could improve robustness in these
edge cases. These examples highlight the challenges of down-
stream mesh fitting in low-density areas, even when the upstream
reconstruction is geometrically correct.
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Figure 6. Qualitative results of monocular prediction on in-the-
wild images taken from Pexels [2]. Each 2-row group shows: (top
row, left to right) input image, high-confidence reconstructed point
cloud overlaid with color (PointMap), and segmentation results;
(bottom row) DensePose predictions and two different views of
the fitted SMPL models. The figure illustrates that our method
can produce coherent reconstructions and mesh predictions from a
single image.

Figure 7. Examples of failure cases. Top row: reconstruction
failures on a scene from EgoHumans. Due to the large scene scale
and wide camera angle (left), human subjects appear very small
after downscaling, leading to noisy point clouds (right) and incor-
rect orientation in the SMPL mesh (inset). Bottom row: failures
caused by extreme body poses. DensePose predictions (middle)
can break down under uncommon configurations (left), resulting
in erroneous SMPL fits (right).


