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Supplementary Material

In this supplementary material, we will provide the fol-
lowing details.

1. Training details.

2. Theoretical analysis.

3. Algorithm details.

4. Details of user study.

5. Additional results and ablations.

1. Training details.

We have provided the hyperparameters for each of the
datasets, i.e., Dreambooth + SyleDrop, Subjectplop, Subject-
plop + SyleDrop and Custom101 + SyleDrop in Table. 1,
Table. 2, Table. 3 and Table. 4 respectively. For each of
the dataset, the content and style images are provided in the
supplementary as attachment.

For the joint training baseline, we are using Dream-
booth [4] style joint training on SDXL with learning rate of
5.e-6. Training for 500 steps across all Unet parameters on a
resolution of 768.

Table 1. Hyperparameters for Dreambooth + SyleDrop

Hyperparameter Values

λlayer_prior 0.1
λcycle 0.01

Base diffusion model SDXL v1.0
LoRA rank 64

Learning rate of LoRA 5e−5

Learning rate of mergers 0.001
Batch size 1
resolution 1024
Tcontent 0.1
Tstyle 0.0

2. Theoretical Analysis

In this section, we provide the proof the theoretical results
provided in the main paper.

Theorem 1. In Low-Rank Adaptation (LoRA) merging, un-
der the same parameter budget, the approximation error

Table 2. Hyperparameters for Subjectplop

Hyperparameter Values

λlayer_prior 0.01
λcycle 0.01

Base diffusion model SDXL v1.0
LoRA rank 64

Learning rate of LoRA 5e−5

Learning rate of mergers 0.001
Batch size 1
resolution 1024
Tcontent 0.75
Tstyle 0.5

Table 3. Hyperparameters for Subjectplop + SyleDrop

Hyperparameter Values

λlayer_prior 0.1
λcycle 0.01

Base diffusion model SDXL v1.0
LoRA rank 64

Learning rate of LoRA 5e−5

Learning rate of mergers 0.001
Batch size 1
resolution 1024
Tcontent 0.1
Tstyle 0.0

Table 4. Hyperparameters for Custom101 + SyleDrop

Hyperparameter Values

λlayer_prior 0.1
λcycle 0.01

Base diffusion model SDXL v1.0
LoRA rank 64

Learning rate of LoRA 5e−5

Learning rate of mergers 0.001
Batch size 1
resolution 1024
Tcontent 0.1
Tstyle 0.0

resulting from rank dimension masking is less than or equal
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to that from output dimension masking. Formally,

Erank ≤ Eout,

where:
Erank = ∥X −∆Wrank∥F

is the approximation error using rank dimension masking,
and

Eout = ∥X −∆Wout∥F
is the approximation error using output dimension masking.

Proof. To compare the two masking strategies fairly, we en-
sure that both use the same number of parameters. Parameter
Count for Rank Dimension Masking,

Prank = s(dout + din).

Parameter count for output dimension masking is,

Pout = ds × r + r × din = r(ds + din).

Now, Setting Equal Parameter Budgets, Set Prank = Pout:

s(dout + din) = r(ds + din).

Assuming dout = din = d for simplicity:

s(2d) = r(ds + d).

Solving for s:

s =
r(ds + d)

2d
.

Next, we compare the Approximation Errors.
Since we retain the s largest singular values to minimize

the error, the approximation error for Rank Dimension Mask-
ing is:

Erank =

(
p∑

i=s+1

σ2
i

)1/2

.

The exact computation of Output Dimension Masking
error (Eout) is complex due to the loss of orthogonality in
Ur caused by masking. However, we can establish a lower
bound.

The total energy (sum of squares) in Ur is:

∥Ur∥2F = trace(U⊤
r Ur) = r.

where each row of Ur contributes equally on average to this
total energy.

The fraction of rows masked out (i.e., energy removed by
masking) is:

f =
d− ds

d
.

Therefore, the approximate fraction of energy removed is f .

Next, we get the lower bound on Approximation Error,
i.e., the loss in the approximation due to output dimension
masking is at least:

E2
out ≥ f

r∑
i=1

σ2
i +

p∑
i=r+1

σ2
i .

The first term f
∑r

i=1 σ
2
i represents the loss from mask-

ing out a fraction f of the energy from the top r singular
values. The second term

∑p
i=r+1 σ

2
i accounts for the singu-

lar values beyond rank r.
Now, Relating s and f , from the parameter equality:

s =
r(ds + d)

2d
=

r

2

(
1 +

ds
d

)
.

Since ds = d(1− f):

s =
r

2

(
1 +

ds
d

)
=

r

2
(1 + (1− f))

=
r

2
(2− f)

= r

(
1− f

2

)
.

Thus,
s

r
= 1− f

2
.

We observe, in Rank Dimension Masking : The approx-
imation error comes from the discarded smaller singular
values (indices i > s). Since s = r

(
1− f

2

)
, we discard the

smallest r − s = r
(

f
2

)
singular values among the top r.

E2
rank =

p∑
i=s+1

σ2
i =

p∑
i=r(1− f

2 )+1

σ2
i .

In Output Dimension Masking: The error includes a loss
from the largest singular values, scaled by f , because mask-
ing affects all components equally.

E2
out ≥ f

r∑
i=1

σ2
i +

p∑
i=r+1

σ2
i .

Total Energy of Top r Singular Values

q =

r∑
i=1

σ2
i .

Sum of Discarded Singular Values in Rank Masking:

q′ =

r∑
i=s+1

σ2
i = q −

s∑
i=1

σ2
i .
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Relation between f and s
r :

f = 2
(
1− s

r

)
.

Now, Expressing E2
rank and E2

out in terms of q and q′, we
get the Rank Dimension Masking Error:

E2
rank = q′ +

p∑
i=r+1

σ2
i .

Output Dimension Masking Error Lower Bound:

E2
out ≥ fq +

p∑
i=r+1

σ2
i .

Since q′ = q −
∑s

i=1 σ
2
i and s = r

(
1− f

2

)
, we have:

q′ = q −
s∑

i=1

σ2
i

≤ q − s

(
σ2
r

r
· r
)

(since σi ≥ σr)

= q − sσ2
r

= q − r

(
1− f

2

)
σ2
r .

Therefore,

E2
rank ≤ q − r

(
1− f

2

)
σ2
r +

p∑
i=r+1

σ2
i .

Comparing with E2
out, we get,

E2
out ≥ fq +

p∑
i=r+1

σ2
i .

Since f = 2
(
1− s

r

)
, we have:

E2
out ≥ 2

(
1− s

r

)
q +

p∑
i=r+1

σ2
i .

Therefore, the difference between E2
out and E2

rank is:

E2
out − E2

rank ≥
[
2
(
1− s

r

)
q −

(
q − r

(
1− f

2

)
σ2
r

)]
=
(
1− s

r

) (
q + rσ2

r

)
.

Since q ≥ rσ2
r , the difference is non-negative, implying:

E2
rank ≤ E2

out.

Lemma 1. Let mc ∈ Rm×n be a matrix representing the
content merger and ms ∈ Rm×n be a matrix representing
the style merger. The problem of minimizing the L1-norm of
mc subject to a rank constraint on mc can be written as:

min ∥mc∥1 subject to rank(mc) > rank(ms)

This problem is non-convex due to the rank constraint. A
convex relaxation can be achieved by approximating the rank
of a matrix using the nuclear norm ∥ · ∥∗, which is the sum of
the singular values of the matrix. Thus, the original problem
can be relaxed to:

min ∥mc∥1 subject to ∥mc∥∗ > ∥ms∥∗

where ∥mc∥∗ denotes the nuclear norm of mc, and ∥ms∥∗
is the nuclear norm of ms.

This relaxed problem can be approached via a La-
grangian penalty formulation:

L(mc,ms, λ) = ∥mc∥1 + λmax(0, ∥ms∥∗ − ∥mc∥∗)

for some penalty parameter λ ≥ 0, which enforces the con-
straint ∥mc∥∗ > ∥ms∥∗ in the limit as λ→∞.

Proof. The rank of a matrix mc is a non-convex function,
making it difficult to optimize directly. The nuclear norm
∥mc∥∗, defined as the sum of the singular values of mc,
provides a convex envelope of the rank function over the
unit ball of matrices in the operator norm. Minimizing the
nuclear norm encourages low-rank solutions because the
nuclear norm penalizes the magnitude of singular values,
making it an effective surrogate for the rank.

Thus, we replace the rank constraint rank(mc) >
rank(ms) with the nuclear norm constraint:

∥mc∥∗ > ∥ms∥∗

This converts the non-convex constraint into a convex in-
equality that we can handle more easily in optimization.

Since the difference ∥ms∥∗ − ∥mc∥∗ is not convex, di-
rectly enforcing ∥mc∥∗ > ∥ms∥∗ would introduce non-
convexity back into the problem. Instead, we approach this
with a penalty function that gradually enforces the constraint.

Define the Lagrangian-like penalty function:

L(mc,ms, λ) = ∥mc∥1 + λmax(0, ∥ms∥∗ − ∥mc∥∗)

where:
- λ ≥ 0 controls the strength of the constraint enforce-

ment.
- The penalty term max(0, ∥ms∥∗−∥mc∥∗) becomes zero

if ∥mc∥∗ ≥ ∥ms∥∗ and adds a positive penalty otherwise.
This penalty formulation turns the original constrained

problem into an unconstrained optimization problem, where
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the constraint ∥mc∥∗ > ∥ms∥∗ is gradually enforced by
increasing λ.

Convergence and Feasibility. As λ → ∞, the penalty
for violating ∥mc∥∗ > ∥ms∥∗ becomes very large, making
it infeasible for any solution to have ∥mc∥∗ ≤ ∥ms∥∗ in the
limit. Therefore, the solution to the penalized Lagrangian
problem approaches the solution to the original problem:

min ∥mc∥1 subject to ∥mc∥∗ > ∥ms∥∗

In other words, by iteratively solving for mc with larger
values of λ, we approximate a solution that satisfies the
nuclear norm constraint. This penalty approach provides a
feasible, convex approximation for the non-convex problem,
yielding a solution that respects the desired rank constraint
indirectly.

The penalty formulation of the Lagrangian:

L(mc,ms, λ) = ∥mc∥1 + λmax(0, ∥ms∥∗ − ∥mc∥∗)

provides an effective convex relaxation for the non-convex
constraint rank(mc) > rank(ms). This approach ensures
that the solution minimizes ∥mc∥1 while approximately sat-
isfying the rank constraint in a manner that is computation-
ally feasible and does not require convexity of the difference
∥ms∥∗ − ∥mc∥∗.

3. Algorithm details

In this section, we provide additional details for our approach
DuoLoRA. The algorithm for cycle-consistent merging using
constyle loss has been provided in Algorithm. 1. Also, the
algorithm for content and style mergers initialization method
is provided in Algorithm. 2.

4. Details of user study

Since the perceptual metrics are not always reliable, we con-
duct user study to verify the efficacy of our method. We pro-
vide 20 examples of content, style pairs and corresponding
generated images using Naive merging, B-LoRA, ZipLoRA
and DuoLoRA. Then, we asked the following question to
amazon mechanical turks: "which of the generated images
is of best visual quality considering factors that we preserve
both the content and style?", and the options are “Naive
merging”, “B-LoRA”, “ZipLoRA”, “DuoLoRA”, “None is
satisfactory”. We evaluate this by 50 users, totalling 1000
questionnaires by Amazon Mechanical Turk (AMT) to get
unbiased results. The aggregate responses in Table. 5 showed
that DuoLoRA generated images significantly outperformed
the baselines by a large margin (50%). This verify that
DuoLoRA generated images retain both content and style.

Algorithm 1: Merging LoRA with Cycle-
Consistency Loss

Input :Content images Ic, Style images Is
Output :Merged LoRA Lm

Step 1: Train LoRA for content and style
- Learn content LoRA (Lc) using content images Ic

and prompt pc=“a <V1> object in <S1>
style”

- Learn style LoRA (Ls) using style images Is and
prompt ps=“a <V2> object in <S2>
style”

Step 2: Apply cycle-consistency loss across style
// Generate variations of Ic

- Icc ← (D + Lc)(Ic, “<V1> object in <S1> style”)
// Add style

- Ics ← (D + Ls)(Ic, “<V1> object in <S2> style”)
// Remove style

- Icsc ← (D+Lc)(Ics, “<V1> object in <S1> style”)
// Ensure cycle-consistency loss

across style
- Lcycle_sty ← MSE(Icc, Icsc)

Step 3: Apply cycle-consistency loss across object
// Generate variations of Is

- Iss ← (D + Ls)(Is, “<V2> object in <S2> style”)
// Add object

- Isc ← (D + Lc)(Is, “<V1> object in <S2> style”)
// Remove object

- Iscs ← (D+Ls)(Isc, “<V2> object in <S2> style”)
// Ensure cycle-consistency loss

across content
- Lcycle_content ← MSE(Iss, Iscs)

Step 4: Merging LoRAs with consistency loss
- Train merged LoRA Lm using Lc and Ls with the

consistency loss:

Lconstyle = ||(D + Lm)(Ic, pc)− (D + Lc)(Ic, pc)||
+ ||(D + Lm)(Is, ps)− (D + Ls)(Is, ps)||
+ λcycle · Lcycle_sty + λcycle · Lcycle_content

where D is the T2I diffusion model and λcycle is the
scaling factor.

Step 5: Inference
- During inference, pass the combined trained tokens

as prompt (e.g., “a <V1> object in <S2>
style running”) to the T2I diffusion model
with merged LoRA Lm to generate variations
corresponding to the text prompt.
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Algorithm 2: Content and Style Merger Initialization
Algorithm

Input: Content merger mc, Style merger ms, content
threshold (Tcontent), style threshold (Tstyle)

Output: Initialized content merger vector, Initialized
style merger vector

V ← rand(64, 1);
V ′ ← V

∥V ∥ ; // Normalize V

if Rank(mc) > Rank(ms) then
content_merger_init← 1(V ′ > Tstyle)
style_merger_init← 1(V ′ > Tcontent)

else if Rank(mc) < Rank(ms) then
content_merger_init← 1(V ′ > Tcontent)
style_merger_init← 1(V ′ > Tstyle)

else
content_merger_init← 164×1

style_merger_init← 164×1

end

Table 5. User study

None Naive merging B-LoRA ZipLoRA DuoLoRA

0.0% 10% 18% 22% 50%

5. Additional results and ablations
5.1. Comparisons and Qualitative results
We provide additional results using joint training baselines
for all the datasets in Table. 6. Qualitative results in Fig. 2,
Fig. 3, Fig. 7, Fig. 4 and Fig. 5 also shows that DuoLoRA per-
forms better than the baselines. In Fig. 1, we show ablations
of how each components affect the merging. We also show
results while using concepts from real-world concept-centric
custom101 dataset [3] and styles from styledrop dataset.
DuoLoRA outperforms baselines as shown in Fig. 8, Fig. 9,
Fig. 9, Fig. 10 and Fig. 11. We also compare with Paircus-
tomization [2] using their setup, since they require 1-shot
concept-style pair for training. We use their dataset for fair
comparison with 6 objects, 2 styles. DuoLoRA performs
better than Paircustomization as shown in Fig. 17 and also in
main paper. Moreover, training DuoLoRA is more easier and
parameter efficient than Paircustomization, which requires
sort of joint training framework.

5.2. Multi-concept stylization
Here we provide details of multi-concept stylization. We
further extend our approach to handle multi-concept styliza-
tion. Given two concepts, C1 and C2, and a style S, our
objective is to generate an image that contains both C1 and
C2 in style S. To achieve this, we decompose the task into in-
dividual content-style merging processes, specifically C1-S
and C2-S merging, using layer-prior-informed loss. We then
perform an arithmetic merging of the outputs from C1-S and

C2-S to create the final image. The steps are as follows:

• We begin by merging each concept C1 and C2 with the
style S. First, we train LoRAs L1, L2, and Ls with
identifiers < v1 >, < v2 >, and < s >, respectively.

• Next, we merge LoRAs L1 and L2 with Ls in the rank
dimension, applying the layer-prior loss as previously
described. That is, we define the merged LoRAs as
L1m = merge(L1, Ls) and L2m = merge(L2, Ls).

• After generating the merged LoRAs, we perform an
arithmetic merging to obtain the final merged LoRA:
L1,2,S = α1L1m + α2L2m.

• During inference, we use directional prompting
with the merged LoRA L1,2,S , using p = “a <
v1 > object on the left and a < v2 >
object on the right in < S > style”.
We find that directional prompting plays a crucial role
in achieving high fidelity when generating multiple ob-
jects.

We extend this for 2, 3, 4 concepts from Dreambooth
dataset and syles from StyleDrop dataset. The results are
shown in Fig. 12 and Fig. 13. We also show ablation for
directional prompting in Fig. 14, which remains important
for multi-concept composition.

5.3. Recontextualization
We also evaluate the recontextualization ability of our
method. We use text prompts ’riding a boat’,
’sleeping’, ’riding a bicycle’, ’riding
a car’, ’wearing a hat’ to generate different
variation of styled concepts as shown in Fig. 15 and Fig. 16.
Our method can successfully recontextualize w.r.t the text
prompts.
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Table 6. Performance comparison of content and style merging across different datasets and methods
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Figure 2. Qualitative Results on Dreambooth + StyleDrop

Figure 3. Qualitative Results on Dreambooth + StyleDrop
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Figure 4. Qualitative Results on Dreambooth + StyleDrop

Figure 5. Qualitative Results on Dreambooth + StyleDrop
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Figure 6. Qualitative Results on Dreambooth + StyleDrop.
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Figure 7. Qualitative Results on Subjectplop
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Figure 8. Qualitative Results on Custom101
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Figure 9. Qualitative Results on Custom101

Figure 10. Qualitative Results on Custom101
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Figure 11. Qualitative Results on Custom101

Figure 12. Qualitative Results 2 concepts composition
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Figure 13. Qualitative Results on 3 concepts composition

Figure 14. Directional prompt ablation.
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Figure 15. Recontextualization examples
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Figure 16. Recontextualization examples

16



Figure 17. Comparison with Paircustomization
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