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Supplementary Material

Overview

This supplementary material provides some essential de-
tails that complement our main paper. Sec. A presents
the mathematical derivation of the AdvDreamer distribu-
tion update formulation, which builds upon the canonical
form of CMA-ES [7, 8]. Sec. C provides detailed exper-
imental settings and results. Specifically, Sec. C.1 details
the implementation of AdvDreamer and the configuration
of critical hyperparameters. Sec. C.2 presents a compre-
hensive ablation study quantifying the impact of NRM feed-
back on Adv-3DT’s naturalness. Sec. C.3 offers additional
results and analysis of physical experiments. Sec. C.5 pro-
vides the computational cost of AdvDreamer. Sec. C.6
provides a comparison of Adv-3DT samples from Adv-
Dreamer with those from previous studies. Sec. D pro-
vides all prompt templates provided to GPT-4 for auto-
matic annotation of naturalness datasets and GPT-Score /
GPT-Acc metrics. Sec. E showcases additional visualiza-
tion of Adv-3DT examples and its performance across var-
ious tasks. Finally, Sec. F provides an in-depth description
of MM3DTBench and presents detailed quantitative bench-
marking results. Sec. B reports the ImageNet categories uti-
lized in experiments and examples of clean images.

Open Source Declaration

We will release the source code of AdvDreamer, along with
the MM3DTBench dataset and the evaluation scripts. We
will also release our naturalness reward model’s weights
and training dataset. We believe these open-source contri-
butions will facilitate future research in VLMs’ 3D variation
robustness evaluation.

A. Details of Optimization Algorithm

A.1. Derivation of Eq.(10) & (11)
AdvDreamer optimizes adversarial 3D transformation dis-
tributions through Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES). Among various evolutionary opti-
mization algorithms, CMA-ES stands out as one of the most
prominent and effective approaches, demonstrating supe-
rior performance particularly on medium-scale optimiza-
tion problems (typically involving 3-300 variables) [7]. Its
gradient-free nature eliminates the dependency on gradient
information, making it an ideal choice for optimizing the
adversarial 3D transformation distributions in AdvDreamer.

Following the canonical formulation of CMA-ES, Adv-

Dreamer generates a population of 3D transformations in
each optimization iteration t by sampling from the current
adversarial distribution with a specified step size σt, for-
mally expressed as:

zi = µt + σt · γi where γi ∼ N (0,Σt), (A.1)

where each γi represents a search direction in the trans-
formation space. The sampling process for γi can be per-
formed through either Eigendecomposition of the current
adversarial distribution’s covariance matrix Σt = BD2BT ,
or Cholesky decomposition, followed by transformation of
samples drawn from a standard normal distribution:

γi = BDδi, where δi ∼ N (0, I). (A.2)

The sampled population {zi}Ki=1 undergoes reparameteri-
zation to obtain a constrained set of 3D transformation pa-
rameters {Θi}Ki=1, as formulated in Eq.(8). By applying
{Θi}Ki=1 to the original images under generative process,
we generate a batch of Adv-3DT samples {X ′

i}Ki=1 and
compute their LNat and LIPS losses. The samples are then
ranked according to their LIPS values, which quantify the
adversarial effectiveness against the target model:

LIPS (X
′
1:K) ≤ LIPS (X

′
2:K) ≤ · · · ≤ LIPS (X

′
k:K) . (A.3)

We employ truncation selection to identify the samples con-
tributing to distribution parameter updates. Specifically, we
select the k most adversarial samples based on LIPS scores,
then retain the top k/2 samples with the highest LNat val-
ues. This two-stage selection mechanism effectively serves
as a naturalness regularization for the optimization process.
For the sake of simplicity, we denote this selected subset
of population as {z(i:k)}ki=1 and utilize it to update both
the distribution parameters µt+1,Σt+1 and step size σt+1.
The updated mean of the distribution is computed as the
weighted maximum likelihood estimate of the selected pop-
ulation, which can be expressed as:

µt+1 =

k∑
i=1

wi · zt+1
(i:k), where

k∑
i=1

wi = 1. (A.4)

This formulation indicates that the updated mean shifts
along the average search direction. In our implementation,
we assign uniform weights to all selected population, where
wi = 1/k. The covariance matrix Σ update comprises both
rank-1 and rank-µ terms. The rank-1 term incorporates his-
torical search information through an evolution path, which



Table S.1. Category-wise accuracy (%) of physical Adv-3DT samples under different tasks.

Task airliner ambulance fire truck forklift water jug laptop police van shoe street sign tank traffic light trash bin
Zero-shot Cls. 49.4 68.4 1.0 85.0 0.0 99.5 25.3 100.0 48.2 90.9 47.2 0.4
VQA-Choice 3.1 35.9 67.2 9.4 0.0 99.5 34.7 100.0 57.2 5.3 0.6 26.3

VQA-Ture or False 0.3 14.1 0.5 37.2 99.5 99.5 2.6 100.0 96.4 85.2 0.3 58.8

is constructed as:

pt+1 = (1− c)pt +
√

c(2− c)
√
µw

µt+1 − µt

σt
, (A.5)

where the factor µw = 1∑k
i=1 w2

i

, c represents the adaptation

rate/learning rate, is designed based on c−1 ∝ n. Notably, c
is inversely proportional to the degrees of freedom (number
of parameters) of the adjustable variables. The evolution
path characterizes the movement of the distribution mean
by maintaining an exponentially weighted average of the
update directions µt+1−µt

σt
across iterations. This path ef-

fectively encodes one of the most promising search direc-
tions in the current optimization landscape. The covariance
matrix update is based on:

argmax p (pt+1 | µ,Σ) , argmax

k∏
i=1

p

(
z(i:k) − µt

σt

∣∣∣∣ µ,Σ)
.

(A.6)
Building upon this principle, the update rule can be formu-
lated as:

Σt+1 = (1− η1 − ηµ) ·Σt + η1 · pt+1
Σ (pt+1

Σ )T+

ηµ ·
h∑

i=1

wi · (
zt+1
(i:k) − µt

σt
)(
zt+1
(i:k) − µt

σt
)T .

(A.7)

This update mechanism effectively increases the sampling
probability along successful search directions by expand-
ing the variance in these directions. The rank-1 term in
Eq. (A.7), as previously mentioned, directly leverages the
evolution path as a successful search direction. The second
term (rank-µ), represents the weighted maximum likelihood
estimate of the selected population, which can be inter-
preted as natural gradient optimization of Σ in the informa-
tion geometry framework. The learning rates η1, ηµ for both
terms follow the same design principle as c1 ≈ 2

n2 , cµ ≈
µw

n2 , where they are inversely proportional to the degrees of
freedom (number of parameters) of the adjustable variables.

For step size σ adaptation, we adopt the Cumulative
Step-size Adaptation (CSA) mechanism, which is widely
recognized as the most successful and prevalent approach
in the CMA-ES framework [5, 6]. The above derivations
provide a comprehensive elaboration of the algorithmic de-
tails presented in Sec. 3.5 of the main paper.

A.2. Pseudocode of AdvDreamer Framework
We provide the pseudocode for AdvDreamer in Algorithm 1

Algorithm 1: Optimization Algorithm of AdvDreamer

Data: Natural images or text descriptions I ∈ {X,T}.
Result: Optimal distribution parameters µ∗,Σ∗.
/* Foreground-Background Pairs Preparation */

1 {Xf , Xb} ← F(I);
/* Initialization of distribution parameters */

2 µ0 ← 0, Σ0 ← I;
3 while t < tmax do

/* Generate a batch of adversarial samples */
4 for i = 1→ K do
5 zt+1

i ∼ N (µt,Σt);
6 Θt+1

i ← A · tanh(zt+1
i ) +B;

7 (X ′)t+1
i ← Cw1(Rw0(Xf ,Θ

t+1
i ), Xb);

/* Calculate loss/fitness value */

8 Lt+1
i = LIPS((X

′)t+1
i ,Y) + λ · LNat((X

′)t+1
i );

9 end
10 Sorting Lt+1

i in ascending order;
11 Obtain µt+1,Σt+1 by Eq.(A.4) and (A.7);
12 end
13 µ∗ ← µtmax ,Σ∗ ← Σtmax .

Table S.2. The computational cost of AdvDreamer across different
stages and total optimization process.

Step.0 Step.1@iter Step.2@iter Step.3@iter Toatal
Time Cost ≤1s ∼0.6s*k ∼6s*k ≤1s ∼16.5min

Table S.3. Computational Cost and Accuracy of Naturalness As-
sessment Across Human, GPT, and NRM Evaluations.

Human GPT-4o NRM
Time cost ∼43min ∼4min ∼5s

Acc. - 64.94% 67.82%

B. Selected ImageNet Categories
We conduct experiments of zero-shot classification task
(Tab. 1 ) on 30 ImageNet Categories, generating Adv-3DT
samples from both ImageNet test set images and synthetic
images created using Stable-Diffusionv2. The selected cat-
egories are enumerated in Tab. S.4.

C. Additional Experimental Results
C.1. Implementation Details
Optimization Algorithm. we employ CMA-ES through
the cmaes [12] library. The distribution mean µ is ini-
tialized as [90, 180, 90, 0, 0, 1.0], with optimization bounds
constrained to Θmin = [0, 160, 80,−100,−100, 0.5],
Θmax = [360, 200, 100, 100, 100, 1.5]. We initialize co-
variance matrix µ as a identity matrix, with a step size σ of



Table S.4. The selected 30 categories in ImageNet dataset.

0 backpack 5 carton 10 rocking chair 15 beaker 20 coffee mug 25 monitor
1 barber chair 6 chest 11 lamp 16 convertible 21 ballpoint 26 dustcart
2 minivan 7 moped 12 cocktail shaker 17 park bench 22 waggon 27 cleaver
3 folding chair 8 microwave 13 ambulance 18 jug 23 moving van 28 mailbox
4 hatchet 9 coffeepot 14 fire truck 19 crate 24 chiffonier 29 doormat

Table S.5. VQA accuracy(%) of representative VLMs under
MM3DTBench.

VLMs Choice Free Answer Avg. Rank
GPT-4o [13] 69.30 47.44 58.37 1
GPT-4o-mini [13] 58.60 46.51 52.56 2
CogVLM [16] 60.00 40.00 50.00 3
InternVL [4] 46.05 49.77 47.91 4
Qwen-VL [2] 58.60 36.74 47.67 5
LLaVa-1.6 [10] 49.77 34.42 42.10 6
ShareGPT-4V [3] 50.23 33.02 41.63 7
MiniGPT-4 [18] 48.84 30.70 39.77 8
Mplug-Owl2 [17] 40.47 32.56 36.52 9
InternLM-2 [15] 38.60 27.90 33.25 10
LLaVa-1.5 [11] 41.40 24.60 33.00 11
Claude-3 [1] 35.81 24.19 30.00 12
LRV-Instruction [9] 23.70 13.02 18.36 13

0.5, which decays exponentially during optimization with a
decay rate of 0.9. Other hyperparameters follow the default
configuration in official implementation.
Training Details of NRM. To train the Natural Reward
Model (NRM), we first establish a large-scale image nat-
uralness assessment dataset, which comprises 100k images
obtained by applying random 3D transformations to sam-
ples from ImageNet and generated images. Following the
methodology detailed in Sec. 3.4 of main paper, we leverage
GPT-4o for automated naturalness scoring, complemented
by human verification. Representative examples of the an-
notation process are illustrated in Fig. S.1. The dataset is
split into training and validation sets with a 9:1 ratio.

We formulate NRM training as a multi-classification
task, where the model predicts specific scores for realism
and physical plausibility. The backbone of NRM adopts DI-
NOv2 (ViT-L/14 distilled), where we apply average pooling
over patch tokens to obtain 1024-dimensional feature rep-
resentations. These features are then fed into two separate
prediction heads for parallel classification. Each head con-
sists of two fully connected layers with non-shared weights,
configured as (1024, 512) and (512, 5), respectively. The
network is optimized using cross-entropy loss as the train-
ing objective. The NRM is trained for 100 epochs, achiev-
ing a prediction accuracy of 75.03% on the test set.

C.2. Naturalness Evaluation Effect
Alignment between NRM and Human Evaluation: A
critical aspect of NRM is its ability to approximate hu-
man judgment for replacing manual Adv-3DT image fil-

tering during optimization. To validate this alignment, we
conducted a human evaluation study on 175 test images
with volunteer annotators. Tab. S.3 presents the agreement
rates (difference within 1 point) between human scores and
predictions from both NRM and GPT-4o. NRM achieves
67.82% accuracy, outperforming GPT-4o’s 64.94%. This
superior performance stems from additional manual refine-
ment of NRM’s training data to mitigate the inherent output
instability of GPTs. Furthermore, Tab. S.3 demonstrates
that NRM’s inference time is negligible compared to both
human and GPT-based evaluations, significantly enhancing
optimization efficiency.

C.3. Detailed Physical Experiment Results
Tab. S.1 presents a detailed category-wise accuracy of our
physical-world experiments (Tab. 4 of main paper). Ad-
ditionally, we visualize the zero-shot classification results
using OpenCLIP ViT-B/16 on sampled frames (every 5
frames) from our physical reproduction vedio sequences, as
shown in Fig. S.2. Green and red boxes indicate successful
and failed classifications, respectively.

C.4. Comparison of Samples from AdvDreamer
with Those from Previous Studies.

We further compare previous methods in overlapping Im-
ageNet classes. Results in Appendix C.5 demonstrate that
AdvDreamer exhibits superior performance in both adver-
sarial effectiveness and sample naturalness. It outperforms
GMVFool [14] by 20% in ASR while maintaining greater
fidelity to human-captured real Adv-3DT samples in natu-
ralness.

C.5. Computational Cost
The computational overhead for different stages within a
single iteration of AdvDreamer is detailed in Tab. S.2. For
each clean sample, optimizing the adversarial distribution
requires approximately 16.5 GPU minutes, with image re-
construction (step-2) being the primary bottleneck. Our ex-
periments on the ImageNet test set (300 samples) consumed
96 GPU hours on an NVIDIA RTX 3090.

C.6. Comparison with Prior Studies
We evaluate samples generated by different methods in
overlapping ImageNet classes. The Tab. ?? shows that Adv-
Dreamer outperforms in both attack success rate (ASR) and
naturalness (ScoreR and ScoreP , defined in Eq. (6)).



Step 1: Beginning with the overall visual realism of the image, the lighting appears soft and
consistent with the presence of the lamp. The colors are natural, and the textures on the bed
and walls seem realistic. However, there is an odd object (the pillow propped up) that detracts
from the overall coherence of the scene, making it look slightly unnatural. Overall, the image is
quite clear with minimal signs of artificial artifacts.
Step 2: Evaluating the physical plausibility of the objects in the scene, the main issue is the
pillow appearing to be propped up in a manner that suggests it is floating slightly above the bed.
This lack of grounding is not consistent with how one would expect the objects to interact.
Additionally, the shadows produced by the lamp are in line with the lighting source, but the
floating appearance of the pillow disrupts the physical logic of the scene. Score for Physical Final
Scoring:
Realistic Score: 3
Physical Score: 2

Step 1: Beginning with the overall visual realism of the image, the scene appears relatively
clear with some good color consistency. However, there is a noticeable lack of detail in the police
car, which makes it look less realistic compared to the background. Additionally, some areas
exhibit slight blurriness, particularly around the car, which detracts from the overall clarity.
Step 2: Evaluating the physical plausibility of the objects in the scene, the police car appears 
grounded, but its details are minimal and lack realism. The shadows and lighting on the car do 
not perfectly align with the rest of the scene, making it less convincing. The traffic lights are also 
visible but their integration into the scene feels somewhat disconnected due to the car's lack of 
detail.
Final Scoring:
Realistic Score: 2
Physical Score: 2

Step 1: Beginning with the overall visual realism of the image, there appears to be some
blurriness and color inconsistency, particularly with the main object that seems to be poorly
integrated into the background. The edges of the object are not well-defined, leading to a
somewhat artificial appearance. Overall, the image contains elements that suggest it may have
been generated by an image model, particularly in the texture and detail levels.
Step 2: Evaluating the physical plausibility of the objects in the scene, the floating object does 
not appear grounded or supported in a way that is consistent with gravity. Additionally, there 
are issues with shadows that do not correspond to the light sources in the scene, contributing to 
a lack of realism regarding physics in the image.
Final Scoring:
Realistic Score: 1
Physical Score: 1

Figure S.1. Examples of image naturalness annotation results using GPT-4o.

Table S.6. comparison of Adv-3DT samples from AdvDreamer with those from previous studies.

Methods OpenCLIP BLIP-2 Qwen-VL 4o-mini GPT-4o ScoreR ScoreP

Human-guided
[65] 17.3 13.8 4.2 2.1 2.0 3.3 3.3
[8] 23.8 17.4 10.2 0.0 0.0 3.1 3.0

Simulation-based [39] 21.6 16.9 6.9 4.6 3.4 2.5 2.9

Multiview-based
[18] 45.4 37.1 10.7 8.1 4.5 2.0 2.1
[47] 61.9 52.2 16.0 13.2 7.6 2.0 1.0

Generative-based Ours 82.0 81.3 41.6 39.1 38.4 2.7 2.9

D. Prompt Templates

Fig. S.3 illustrates the prompt template for automatic an-
notation of NRM training data. The prompt templates for
computing GPT-Score and GPT-Acc metrics, which are em-
ployed to evaluate image captioning and VQA performance

in our main experiments (Tab. 2), are presented in Fig. S.4.

E. Visualization Examples
We provide additional visualization examples of physically
captured Adv-3DT samples in Fig. S.5.



Natural Image

Adv-3DT Image 
(Synthetic)

Adv-3DT Image (Real World)

Natural Image

Adv-3DT Image 
(Synthetic)

Adv-3DT Image (Real World)

Figure S.2. Physical reproduction results of Adv-3DT Samples: zero-shot classification performance on video frame sequences.

F. MM3DTBench
Tab. S.5 presents comprehensive evaluation results of repre-
sentative VLMs on our MM3DTBench benchmark. To pro-
vide deeper insights into the benchmark’s composition, we
visualize exemplar Adv-3DT samples and their correspond-
ing question templates and annotation format in Fig. S.6.
The annotation framework consists of four semantic options
per sample, including the ground truth label, which is care-
fully crafted to maintain semantic ambiguity. We also pro-
vide the spatial description of the target objects in the anno-
tation file.



"system"
"You are an image analysis expert."

"user"
You are an image analysis expert tasked with evaluating the naturalness of images generated by a model. 
Your evaluation will be based on two key dimensions:
1. Visual Realism: Assess the overall visual realism of the image. Consider factors such as image clarity, 

color consistency, and whether there are any signs of use Image Generation model like stable diffusion 
and other artificial artifacts like blurring, ghosting, or meaningless patches. Assign a score based on 
the level of realism, where 0 is the lowest and 4 is the highest.

2. Physical Plausibility: Evaluate the physical plausibility of the objects in the image. Analyze whether all 
the objects conform to the laws of physics, considering factors like whether objects are appropriately 
grounded or if they appear to be floating unnaturally, , and whether the light and shadows are 
natural.. Assign a score based on the physical realism, where 0 is the lowest and 4 is the highest.

Follow the steps below to perform a thorough analysis and conclude with scores for both dimensions.
Example Context:

Step 1: Start by examining the overall visual realism of the image. The image has 
some blurring and the colors seem slightly off, with some areas showing patches 
that don't fit well with the rest of the scene.
Step 2: Next, analyze the physical plausibility of the main objects in the scene. The 
objects in the center of this image appears to be floating without any physical 
support, and the shadows are inconsistent with the lighting.
Final Scoring: Realistic Score: 1  Physical Score: 2

Now, apply the same chain of thought to evaluate the given image. Please remember to follow the steps 
carefully and conclude with 'Realistic Score: [score]' and 'Physical Score: [score]'. Please analysis the 
above image:

Figure S.3. The prompt template for image naturalness evaluation

"system"
"You are an caption quality analysis expert."

"user"
I will provide a predicted caption along with a list of 10 standard captions for an image. Please evaluate 
the quality of the predicted caption according to the following criteria:
1. Semantic Accuracy: Does the caption describe the same object(s) and attributes as in the true captions? 

The score ranges from 0 to 10, where a higher score means greater semantic similarity and relevance. 
2. Tone Confidence: Does the caption sound confident? A lower score should be given if the caption 

contains uncertainty or words like "maybe" or "might". The score ranges from 0 to 10. 
3. Consistency: Is the predicted caption consistent with the reference captions in an overall sense? The 

score ranges from 0 to 10.
Please provide the score for each metric, including an explanation for each score. Conclude with the total 
score in the format "Toatal Score: [score]'".
Predicted Caption: "{predicted_caption}"
Reference Captions: """ + "\n".join([f"- {cap}" for cap in reference_captions])

"user"
I will provide a predicted answer to a visual question answering (VQA) task, along with 10 human-provided 
reference answers with varying confidence levels (e.g., "yes", "maybe", "no"). Please evaluate if the 
predicted answer is correct based on the reference answers and their confidence levels. If the predicted 
answer aligns with most high-confidence reference answers ("yes" or multiple "maybe"), mark it as "1" 
(correct). If it deviates significantly from these high-confidence answers, mark it as "0" (incorrect).
Please provide the score including an explanation for each score. Return a single integer in the format 
"Score: (1 or 0)" based on your evaluation.
Predicted Answer: "{predicted_answer}"
Reference Answers: {reference_answers_text}

Figure S.4. The prompt template for GPT-Score in image captioning tasks and for GPT-Acc in VQA tasks.



“What is the main object in this 
image? Choose from the 
following list: Airliner, Trimaran, 
Kite and Pole.”

"Kite"

“What is the main object in this 
image? Choose from the following 
list: Cassette player, Ambulance, 
Block plane and Race car.”

"Race car"

“What is the main object in this 
image? Choose from the following 
list: Coffee mug, Coffeemaker, Water 
jug and Hair dryer.”

"Coffee mug"

“What is the main object in this 
image? Choose from the 
following list: Fire truck , Train, 
Trams and Rifle.”

"Train"

“What is the main object in this 
image? Choose from the following 
list: Forklift, Toy truck, Forklift and 
Lawn mower.”

"Lawn mower"

“What is the main object in this 
image? Choose from the following 
list: Metal pipe, Funnel, Trash can 
and Strainer.”

"Strainer"

Figure S.5. Additional visualization of Adv-3DT samples.

"img_path": “./living_room_1_washing_machine_37_final_15_12_7.jpg",
"gt": "washing machine",
"choices": ["washing machine","remote", "oven", "microwave"],
"location": "on the right side of the table",

Annotation format

Question format

• Choice: f"What is the object {location}? Choose from the following list: {', '.join(choices)}, 
you only need to output one of the options, no need for redundant replies."

• Free answer: f"What is the object {location}?"

Figure S.6. Anotation format, question format and some examples in MM3DTBench.
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