
Supplementary materials
CAD-Recode: Reverse Engineering CAD Code from Point Clouds

Danila Rukhovich1

danila.rukhovich@uni.lu

Elona Dupont1

elona.dupont@uni.lu

Dimitrios Mallis1

dimitrios.mallis@uni.lu

Kseniya Cherenkova12

kseniya.cherenkova@uni.lu

Anis Kacem1

anis.kacem@uni.lu

Djamila Aouada1

djamila.aouada@uni.lu

1SnT, University of Luxembourg 2Artec3D, Luxembourg

A. Training Details

The CAD-Recode implementation uses Qwen2-1.5B as
the LLM decoder. The training configuration employs the
AdamW optimizer with a learning rate of 0.0002 and weight
decay of 0.01, while maintaining other parameters at their
default values from the HuggingFace implementation [11],
including the cosine learning rate scheduler. The train-
ing process is conducted for 100 k iterations, incorporating
an initial warmup period of 1 k iterations. Using a single
NVIDIA H100 GPU with a batch size of 18, the complete
training process takes approximately 12 hours. For abla-
tion study examining decoder size impact (Section 5.1 of
the main paper), we utilize Qwen2-0.5B.

B. Training Dataset Generation Algorithm

In Section 3.2, the procedurally generated training dataset
is presented. The main advantage of generating data over
using the existing DeepCAD dataset for training is that the
algorithm allows full control over the amount of data as well
as the features and design patterns that the network is ex-
posed to during training. We generate one million valid
Python CadQuery code snippets, through an automated
pipeline leveraging PythonOCC [9] and CadQuery [2]. The
generation process consists of two primary components: (1)
a sketch profile generator (Algorithm 1) that creates valid
2D sketches, and (2) a CAD model generator (Algorithm 2)
that produces 3D CAD models from these sketches.

The sketch generation process combines primitive
shapes (circles and rectangles) through boolean operations
(union and cut). From each generated sketch, we extract
the primitives (lines, arcs, and circles) from both inner and
outer loops. The validity of the generated sketch is en-
sured through multiple verification steps, including verify-
ing that loops do not intersect, and each primitive has a
length greater than zero. Finally, we ensure that the ran-

domly generated CAD code has not previously been gener-
ated using the duplicate detection protocol outlined in [14].
This ensures that each sample in the dataset is unique.

The CAD model generation procedure extrudes the val-
idated sketches and combines them through union opera-
tions. The planes on which the sketches lie are randomly
generated by choosing one of the three canonical planes
translated by a random amount. Each resulting model un-
dergoes normalization to fit within a unit bounding box
centered at the origin. The parameters are quantized so
that the coordinates of any point on the CAD surface are
within the range −100 to 100 with a minimum resolution
of 1 unit. We then simplify the sequence using higher
level abstractions (rectangle, box, and cylinder) by con-
sidering the sequence parameters. Our validation frame-
work verifies that a generated code w executes without
errors (ϕsyn). Furthermore, we check that the executed
code produces a geometric valid CAD model (ϕcad) using
the BRepCheck Analyzer function from PythonOCC
as in [13]. Invalid models are excluded from the dataset.

Figure 1 presents examples of CAD models alongside
their corresponding CadQuery Python code from our pro-
cedurally generated dataset. It is worth noting that the gen-
erated codes are fairly compact, this was designed to fa-
cilitate training. All code examples are directly executable
using a standard Python interpreter with the CadQuery li-
brary. The codes follow a consistent three-part structure:
(1) necessary library import, (2) definition of sketch planes,
and (3) sketch-extrude operations combined through union.

The training dataset generation procedure provides full
control over the features included. In Figure 2, it can be ob-
served that the distribution of our CAD models is skewed
towards models with larger face and edge count per model
with interquartile ranges. As a result, our procedurally gen-
erated dataset provides a larger variety of models.

1

Algorithm 1 Generate2DSketch
1: function GENERATE2DSKETCH
2: numPrimitives← RandInt(3, 8) ▷ Choose random number of shape primitives
3: compositeShape← ∅ ▷ Initialize empty shape
4: for i← 1 to numPrimitives do ▷ Build shape by combining primitives
5: primitive← random from {Circle, RotatedRectangle}
6: booleanOperation← random from {Union, Cut} ▷ Union adds, Cut subtracts
7: compositeShape← ApplyOperation(compositeShape, primitive, booleanOperation)
8: end for
9: boundaryLoops← ExtractBoundaryLoops(compositeShape) ▷ Extract shape boundaries

10: boundaryComponents← ∅
11: for loop ∈ boundaryLoops do ▷ Process each boundary loop
12: (edgeSequence, isOuter)← AnalyzeBoundary(loop) ▷ List of parametric curves (lines, arcs, circles)
13: boundaryComponents.Append((edgeSequence, isOuter))
14: end for
15: boundaryComponents← V alidateShapeTopology(boundaryComponents) ▷ Ensure valid shape topology
16: return boundaryComponents ▷ Returns list of (edges, boolean) tuples
17: end function

Algorithm 2 GenerateCAD
1: function GENERATECAD
2: cadModel← ∅ ▷ Initialize empty CAD model
3: planes← GenerateRandomPlanes() ▷ Create set of reference planes
4: sketches← Generate2DSketch() ▷ Get sketches from Algorithm 1
5: for sketch ∈ sketches do ▷ Create 3D volumes from sketches
6: plane← RandomSelect(planes) ▷ Select random reference plane
7: volume← ExtrudeSketch(sketch, plane) ▷ Create 3D volume by extrusion
8: cadModel← BooleanUnion(cadModel, volume) ▷ Add volume to model
9: end for

10: cadModel← NormalizeModel(cadModel) ▷ Ensure the model fits within a unit box
11: cadModel← QuantizeParameters(cadModel) ▷ Discretize model parameters
12: cadModel← SimplifyCADModel(cadModel) ▷ Identify high-level abstractions (rectangle, box, and cylinder)
13: cadModel← V alidateCADModel(cadModel) ▷ Ensure validity of CadQuery code and CAD model geometry
14: cadModel← CheckDuplicate(cadModel) ▷ Ensure that the sequence has not previously been generated.
15: return cadModel
16: end function

C. Real-World CC3D Dataset

Results on the real-world CC3D [1, 7] dataset are presented
in Table 3 of the main paper. This scenario provides an
experimental evaluation in a realistic setting, as the input
point clouds are sampled from actual 3D scans of CAD
models. Sample models are depicted in Figure 3, where ar-
tifacts such as surface noise, smoothed edges, and missing
parts can be observed. Furthermore, several models from
the CC3D dataset are constructed using a range of opera-
tions beyond simple extrusion, including revolution, cham-
fer, and fillet. Consequently, the real-world CC3D dataset
provides a challenging set of inputs that enables robust in-
the-wild evaluation of our proposed method.

D. Further Experimental Results

Qualitative Results: Additional qualitative results for the
reverse engineering of CAD models from point clouds are
presented for DeepCAD (Figure 4), Fusion360 (Figure 5),
and real-world CC3D (Figure 6) datasets. As detailed in
Section 5.1 of the main paper, CAD-Recode consistently

generates shapes that closely approximate the input point
cloud geometry, whereas CAD-SIGNet [4] can generate
predictions that greatly differ from the input.

Code Outputs: Figure 7 illustrates the predicted code
sequences and their corresponding reconstructed shapes.
The predicted codes have a syntax that is consistent with
the procedurally generated training examples, showing that
CAD-Recode successfully learns both the features and
CAD design patterns established in the training set.

Ablation Results: Table 1 shows the architecture ablation
results on all metrics, complementing Table 4 of the main
paper. Results show that for the same size of input point
clouds Qwen1.5b always produces better geometric perfor-
mance (median CD and IoU) than Qwen0.5b. This can be
attributed to the higher number of parameters as well as
to the better ability of the model to produce valid python
code before fine-tuning. Furthermore, increasing the size of
the input point cloud demonstrates a similar pattern, with
Qwen1.5b with an 256 input points appears to be the set
of architecture parameters leading to the best performance.
Note that the mean CD is a metric that is very sensitive to

import cadquery as cq
w0 = cq.Workplane('ZX', origin=(0, -13, 0))
r = w0.workplane(offset=-87 / 2).moveTo(52.5, 10.5).box(57, 83, 87)
.union(w0.workplane(offset=23 / 2).moveTo(-29, 0).cylinder(23, 30))
.union(w0.workplane(offset=113 / 2).moveTo(-29, 0).cylinder(113, 52))

import cadquery as cq
w0 = cq.Workplane('ZX', origin=(0, -30, 0))
r = w0.sketch().segment((-30, -27),(-18, -31)).segment((-19, -31)).segment((-19, -100))

.segment((38, -100)).segment((38, -31)).segment((10, -31)).segment((13, -23))

.arc((30, -13), (23, 5)).segment((33, 33)).segment((16, 39)).arc((-12, 99),(-9, 33))

.close().assemble().finalize().extrude(60)

import cadquery as cq
w0 = cq.Workplane('YZ', origin=(-14, 0, 0))
r = w0.workplane(offset=17 / 2).moveTo(4, -73.5).box(104, 53, 17)
.union(w0.sketch().segment((-78, 23), (2, -55)).segment((40, -17))

.arc((42, -24),(48, -30)).segment((48, 5)).segment((61, 5))

.segment((78, 22)).segment((-2, 100)).close().assemble()

.push([(0, 22)]).circle(50, mode='s').finalize().extrude(29))

import cadquery as cq
w0 = cq.Workplane('XY', origin=(0, 0, 42))
w1 = cq.Workplane('YZ', origin=(-17, 0, 0))
r = w0.sketch().arc((-12, 6), (34, -29),(-1, 16)).segment((5, 4)).segment((-8, -2))

.close().assemble().finalize().extrude(56)
.union(w0.sketch().arc((-42, 54), (-12, 71), (19, 54)).segment((19, 78))

.segment((-42, 78)).close().assemble().finalize().extrude(58))
.union(w1.sketch().segment((-44, -100), (51, -100)).segment((51, 5)).segment((27, 5))

.arc((-58, 40),(-44, -51)).close().assemble().reset()

.face(w1.sketch().arc((-54, -17), (-26, -34),(3, -17)).close()

.assemble(), mode='s').reset().face(w1.sketch().segment((-54, 14), (3, 14))

.arc((-26, 31), (-54, 14)).assemble(), mode='s').finalize().extrude(-13))

import cadquery as cq
w0 = cq.Workplane('YZ', origin=(-22, 0, 0))
w1 = cq.Workplane('ZX', origin=(0, -19, 0))
r = w0.sketch().segment((-100, -83),(-67, -83)).segment((-80, -52)).segment((-75, -50))

.segment((-75, 62)).segment((17, 62)).segment((17, -62)).segment((-40, -62))

.segment((-37, -71)).segment((-65, -83)).segment((43, -83))

.segment((43,83)).segment((-100,83)).close().assemble().finalize().extrude(8)
.union(w1.sketch().segment((-77, -53),(76, -53)).arc((76, -48),(77, -42))
.segment((77, 53)).segment((-77, 53)).close().assemble()
.push([(38.5, 2.5)]).rect(9, 57, mode='s').finalize().extrude(119))

Figure 1. Examples from our procedurally generated training dataset. Each row contains CadQuery Python code and a corresponding CAD
model. Examples contain not only basic line, circle, and arc primitives, but also higher-level abstractions such as rect, box, and cylinder.

5 10 15 20 25 30 35 40
Number of faces per model

DeepCAD

Our
Dataset

(a) Box-plot graph of the distribution of the number of faces per model.

0 20 40 60 80 100
Number of edges per model

DeepCAD

Our
Dataset

(b) Box-plot graph of the distribution of the number of edges per model.

Figure 2. Our 1M procedurally generated training dataset displays distributions CAD models that are skewed towards models with larger
edge and face count per model than the DeepCAD dataset (160 k models).

outlier predictions. While Qwen1.5b with 256 input points
appears to result in the highest IR, it is negligibly low on
all datasets (less 0.5%). This can also be explained by the
fact that this setting produces more complex CAD sketch-
extrude sequences, making them more susceptible to errors.
Note that a key idea of our method is to leverage pre-trained
LLMs as decoder of Python code. In the absence of LLM-
based CAD reverse engineering methods, we compare our
approach to SOTA methods despite the difference in model
sizes. For reference, CAD-SIGNet contains 6 M parame-
ters.

Command & Parameter Accuracy: In order to evaluate
the ability of CAD-Recode to predict numerical values
and sequences that are consistent with the training set, we
evaluate CAD-Recode trained on the DeepCAD dataset
converted to CADQuery python codes with the Acccommand
and Accparameter as introduced in [13]. The results on the
DeepCAD testing set are presented in Table 2. It can be
observed that CAD-Recode achieves comparable perfor-
mance to the state-of-the-art on the commnad type accuracy
and significantly higher performance on the parameter accu-
racy. This demonstrates that CAD-Recode is able to pre-

Ground truth
CAD model

Real-world
noisy scan

Figure 3. Example models from real-world CC3D dataset. The scans exhibits numerous artifacts such as surface noise, missing parts and
smoothed edges. In the CC3D experiments reported in the main paper, the input point clouds are sampled from the scans. Zoom in for
better details.

Points Model DeepCAD Fusion360 CC3D
Size Mean CD↓ Med. CD↓ IoU↑ IR↓ Mean CD↓ Med. CD↓ IoU↑ IR↓ Mean CD↓ Med. CD↓ IoU↑ IR↓

64
0.5B 0.42 0.20 88.5 0.1 0.58 0.22 82.1 0.1 0.87 0.45 70.1 0.1
1.5B 0.36 0.19 89.3 0.0 0.43 0.20 83.7 0.1 0.83 0.42 71.2 0.0

128
0.5B 0.36 0.18 89.9 0.1 0.43 0.18 84.3 0.1 0.87 0.38 71.9 0.1
1.5B 0.27 0.17 91.0 0.1 0.36 0.17 86.1 0.1 0.79 0.34 73.1 0.1

256
0.5B 0.36 0.17 90.6 0.2 0.40 0.17 85.4 0.4 0.87 0.36 72.6 0.1
1.5B 0.30 0.16 92.0 0.4 0.35 0.15 87.8 0.5 0.76 0.31 74.2 0.3

Table 1. Ablation of architecture details.

dict numerical values accurately. Note that, those metrics
were originally developed to evaluate autoencoding abil-
ity. However, there may exist many different possible valid
CAD sequences to construct the same CAD model and these
metrics do not take this into account. As a result, these met-
rics were omitted in recent works (CAD-SIGNet [4] and
TransCAD [3]).

Invalid Predictions: The invalidity rate of
CAD-Recode predictions is very low, below 1% on the
DeepCAD [13], Fusion360 [12] and real-world CC3D [7]
dataset. Some examples of invalid code predictions are
presented in Figure 8. Invalid predictions happen when the
CAD model contains features of dimension smaller than
the resolution induced by quantization (Figure 8(a) and (b))
or when the ground truth CAD model contains features,
such as revolution or B-spline, that are not present in the
training dataset (Figure 8(c) and (d))).

Method Acccommand (%) Accparameter (%)

DeepCAD [13] 80.4 69.6
PrismCAD [5] 73.0 66.8
HNC-CAD [15] 82.7 74.6
CAD-Diffuser [6] 88.5 82.9
CAD-Recode 83.9 92.1

Table 2. Command and parameter accuracy results [13] on the
DeepCAD dataset. All methods (incl. CAD-Recode) are trained
and tested on DeepCAD dataset.

Point Cloud

CAD-SIGNet

CAD-Recode

GT

Figure 4. Qualitative results on the DeepCAD dataset.

Point Cloud

CAD-SIGNet

CAD-Recode

GT

Figure 5. Qualitative results on the Fusion360 dataset.

Point Cloud

CAD-SIGNet

CAD-Recode

GT

Figure 6. Qualitative results on the real-world CC3D dataset.

import cadquery as cq
w0 = cq.Workplane('XY', origin=(0, 0, -17))
r = w0.sketch().segment((-48, -64), (24, -64)).segment((24, -43)).segment((-27, -43))

.segment((-27, 60)).segment((27, 60)).segment((27, -39)).segment((48, -39))

.segment((48, 100)).segment((-48, 100)).close().assemble().finalize().extrude(20)
.union(w0.sketch().segment((-82, -100),(-27, -100)).segment((-27, 80)).segment((27, 80))

.segment((27, -100)).segment((82, -100)).segment((82, -79)).segment((48, -79))

.segment((48, 100)).segment((-48, 100)).segment((-48, -79)).segment((-82, -79))

.close().assemble().finalize().extrude(34))

import cadquery as cq
w0 = cq.Workplane('XY', origin=(0, 0, -16))
r = w0.sketch().arc((-46, -23), (-95, -74), (-27, -56)).segment((30, -56))

.arc((96, -72), (44, -25)).segment((44, -12)).arc((31, 14), (30, 42))

.arc((1, 92), (-31, 44)).arc((-32, 43), (-33, 43)).arc((-31, 20),(-39, -2))

.segment((-39, -12)).segment((-43, -12)).arc((-45, -17),(-46, -23)).assemble()

.push([(-64, -56)]).circle(28, mode='s').push([(0, 56)]).circle(28, mode='s')

.push([(0, -19)]).circle(28, mode='s').push([(65, -56)])

.circle(28, mode='s').finalize().extrude(32)

import cadquery as cq
w0 = cq.Workplane('ZX', origin=(0, 40, 0))
w1 = cq.Workplane('XY', origin=(0, 0, -19))
r = w0.sketch().arc((-24, -47), (41, -99),(87, -32)).segment((88, -32)).segment((88, 100))

.segment((82, 100)).segment((82, -52)).arc((34, -94), (-18, -52)).segment((-18, 100))

.segment((-24, 100)).close().assemble().finalize().extrude(-80)
.union(w1.workplane(offset=-69 / 2).moveTo(52, 0).cylinder(69, 32))

import cadquery as cq
w0 = cq.Workplane('ZX', origin=(0, 31, 0))
r = w0.workplane(offset=-75 / 2).cylinder(75, 62)
.union(w0.workplane(offset=-25 / 2).cylinder(25, 81))
.union(w0.workplane(offset=13 / 2).cylinder(13, 100))

import cadquery as cq
w0 = cq.Workplane('ZX', origin=(0, 69, 0))
w1 = cq.Workplane('ZX', origin=(0, -85, 0))
r = w0.workplane(offset=-150 / 2).cylinder(150, 15)
.union(w0.workplane(offset=10 / 2).cylinder(10, 31))
.union(w0.workplane(offset=31 / 2).cylinder(31, 8))
.union(w1.workplane(offset=-15/2).cylinder(15,46))

import cadquery as cq
w0 = cq.Workplane('ZX', origin=(0, 20, 0))
r = w0.sketch().circle(61).circle(25, mode='s').push([(34, 4)])

.circle(4, mode='s').finalize().extrude(-41)
.union(w0.sketch().segment((-100, 19), (-88, 11)).segment((-97, -34)).segment((-67, -41))

.segment((-77, -66)).segment((-57, -74)).segment((-57, -72)).segment((-56, -72))

.segment((-56, -75)).segment((-32, -80)).segment((-35, -95)).segment((-16, -100))

.segment((-11, -83)).segment((33, -100)).segment((45, -70)).segment((68, -76))

.segment((76, -61)).segment((66, -56)).segment((100, -30)).segment((88, -19))

.segment((97, 34)).segment((67, 41)).segment((77, 66)).segment((57, 74))

.segment((51, 69)).segment((51, 70)).segment((32, 76)).segment((35, 95))

.segment((16, 100)).segment((11, 83)).segment((-33, 100)).segment((-45, 70))

.segment((-68, 77)).segment((-76, 62)).segment((-66, 56)).close().assemble()

.circle(26, mode='s').finalize().extrude(-20))

Figure 7. CAD-Recode predictions on DeepCAD (top 2 rows), Fusion360 (mid 3 rows), and CC3D (last row) datasets. Each row contains
predicted CadQuery Python code and its result after execution in Python interpreter.

import cadquery as cq
w0 = cq.Workplane('XY', origin=(0, 0, 0))
w1 = cq.Workplane('YZ', origin=(0, 0, 0))
r = w0.workplane(offset=0 / 2).cylinder(0, 98)
.union(w1.workplane(offset=0 / 2).cylinder(0, 100))

(a) The ground truth model contains three very thin cylinders with height smaller than 1. As a result, CAD-Recode is not able to predict
heights with sufficient precision due to quantization and predicts cylinders with height 0, producing an invalid model.

import cadquery as cq
w0 = cq.Workplane('XY', origin=(0, 0, 0))
r = w0.sketch().rect(200, 124).push([(-63.5, 25)]).rect(51, 60, mode='s')

.push([(55, -25)]).rect(50, 60, mode='s').finalize().extrude(0)

(b) As the ground-truth model has thickness less than 1, CAD-Recode predicts an extrusion distance of 0 as a quantized approximation
(highlighted in yellow), resulting in an invalid CAD model.

import cadquery as cq
w0 = cq.Workplane('YZ', origin=(34, 0, 0))
w1 = cq.Workplane('XY', origin=(0, 0, 44))
r = w0.sketch().segment((-7, -35), (11, -36)).segment((11, -24)).arc((1, -14),

(6, -2)).segment((-1, 19)).segment((11, 23)).segment((11, 28))
.segment((11, 29)).segment((12, 29)).segment((12, 35))
.segment((-4, 36)).close().assemble().finalize().extrude(-133)

.union(w0.sketch().segment((5, -7), (14, -2)).segment((8, 8)).arc((7, 0),
(5, -7)).assemble().finalize().extrude(63))

.union(w1.sketch().arc((-100, 12), (-85, 10), (-70, 5)).arc((-68, 6),
(-66, 5)).arc((-59, 4), (-52, 2)).arc((-51, 3), (-50, 4)).arc((-72, 7),
(-90, 12)).close().assemble().finalize().extrude(-88))

(c) The ground-truth CAD model is created with B-spline primitives. Since CAD-Recode supports only arc, circle and line primitives, it
tries to approximate the solution with multiple arcs, but fails to provide a valid CAD model. In particular, the prediction contains an arc
constructed from three co-linear points (highlighted in yellow), which raises an error in CadQuery.

import cadquery as cq
w0 = cq.Workplane('XY', origin=(0, 0, -79))
r = w0.sketch().segment((-100, -1), (-91, -1)).arc((0, -93),(91, -1))

.segment((100, -1)).segment((100, 1)).segment((91, 1)).arc((0, 99),
(-91, 1)).segment((-100, 1)).close().assemble().push([(0, -2)])
.circle(90, mode='s').finalize().extrude(-2)

.union(w0.workplane(offset=140 / 2).cylinder(140, 72))

.union(w0.sketch().segment((-51, 15), (-50, 15)).arc((0, -53),(50, 15))
.segment((51, 15)).segment((51, 27)).segment((48, 27)).arc((0, -53),
(-48, 27)).segment((-51, 27)).close().assemble().finalize().extrude(159))

(d) The ground-truth CAD model is created with a revolution operation. Since CAD-Recode supports only extrusion operation, it tries to
approximate the solution with multiple arcs. However, one of the sketch (highlighted in yellow) results in a self-intersecting loop, which
is not a valid face.

Figure 8. Examples of invalid predictions. Each row contains the ground-truth CAD model (left) and an invalid predicted CadQuery Python
code (right). The CAD models in (a) and (b) are taken from the DeepCAD dataset and the CC3D dataset for (c) and (d). Invalid predictions
mostly take place when the ground-truth contains features of very small dimension with respect to the size of the CAD model as in (a) and
(b), or when the ground-truth model contains operations other than the ones supported as in (c) and (d).

E. Test-time Sampling
The ablation study in Section 5.1 of the main paper demon-
strates the effectiveness of our test-time sampling strategy.
This approach generates multiple plausible solutions by
sampling different input point clouds. Figure 9 illustrates
the qualitative results from different sampling instances.
While CAD-Recode successfully captures the overall ge-
ometry across different samplings, fine-grained details may
vary in reconstruction quality due to the relatively sparse
point cloud input. However, this limitation can be effec-
tively addressed by leveraging multiple sampling iterations
to capture different aspects of the input geometry.

F. Interpretability and CAD-QA
In this section, we provide further details on the CAD-QA
experiments reported in Section 5.2 of the main paper. We
start by providing more details on the SGP-Bench bench-
mark [10]. Then, we present results further results and ex-
amples of GPT-4o outputs.

F.1. Representation and CAD-QA
The goal of the SGP-Bench benchmark is to evaluate the
spatial-semantic reasoning skills of LLMs from symbolic
graphics programs [10]. One aspect of the benchmark is
a set of 1000 multiple choice questions on 3D CAD mod-
els given their corresponding sketch-extrude sequence in
the DeepCAD [13] format. An example is depicted in Fig-
ure 10.

To evaluate the interpretability of our code-based CAD
representation, we translated the 1000 questions of SGP-
Bench from the DeepCAD representation (Figure 10(a)) to
the CadQuery code format (Figure 10(b)). Using the same
protocol as in SGP-Bench [10], and GPT-4o [8], we found
that the accuracy on the multiple choice question in Cad-
Query format is 82.4%. This is about 4% higher than us-
ing the DeepCAD format with an interpretative hint. This
suggests the proposed code representation provides a more
structured and naturally LLM-interpretable representation
of CAD models.

F.2. Point Cloud and CAD-QA
In Table 6 of the main paper, the results for point cloud
CAD-QA are presented. Figure 11(a) depicts an example
of point cloud and question that was used to obtain these
results. In this particular question, the task is to deduce
the number of holes present in the CAD model given the
point cloud as input. Figure 11(b), the answer provided by
PointLLM is shown and it can be observed that PointLLM
is unable to retrieve the correct answer. It is worth not-
ing that PointLLM is a network trained to answer semantic
questions about object given its point cloud representation,
as result in most cases the network is unable to describe

geometric CAD-specific questions. For both CAD-SIGNet
and CAD-Recode, the point cloud CAD-QA is done in a
two step process. First the sketch-extrude is sequence is
predicted from each network, then the sequence along with
the question is passed through GPT-4o. Note that for CAD-
SIGNet an interpretative hint is provided to provide context
on the structure of the sequence. A sample output for CAD-
SIGNet and GPT-4o can be found in Figure 11(c), and in
Figure 11(d) for CAD-Recode and GPT4-o. As the se-
quence was incorrectly predicted by CAD-SIGNet the an-
swer to the question is wrong (1 hole), whereas the pre-
diction from CAD-Recode captured better the geometry
of the input point cloud leading to a correct answer. It is
worth noting, that despite not being provided any informa-
tion about CadQuery Python code in the prompt, GPT-4o is
able to breakdown the predicted sequence into its primitive
components and provide correct and accurate geometric de-
scriptions. This can be explained by the fact that LLMs are
exposed to large amounts of code data during training. As a
result, the CadQuery Python representation of CAD models
is appropriate for

G. Editing Pipeline Details
We provide more details on the editing pipeline presented
in Section 5.2 of the main paper. The goal of this
pipeline is to integrate automated editability capabilities to
CAD-Recode. To this end, we present a simple process
using an off-the-shelf LLM, GPT-4o [8]. Starting from an
output CAD Python code from CAD-Recode as shown in
Figure 12a, we prepare a simple and generic prompt (Fig-
ure 12b) for the LLM to generate a refactored version of
the code such that when executed the user can change with
the dimensions of each primitive. As seen in Figure 12c,
the LLM is able to generate a code with comments that de-
scribe the different primitives semanticallly and include ap-
propriate variables for the dimensions of each of the prim-
itive, such as the height and the diameter of each cylinder.
The code generated by the LLM, can be directly executed
in a Jupyter notebook with the CadQuery and ipywidgets
libraries. Figure 6 of the main paper shows the generated
sliders and how can the shape be then edited. This demon-
strates that the CAD representation as Python code within
a reverse engineering scenario opens the door to new appli-
cations when combined with LLMs.

Point Cloud GT CAD-Recode Predictions

Figure 9. CAD-Recode predictions from different point cloud sampling on DeepCAD, Fusion360, and real-world CC3D datasets. For
each prediction, 256 points are sampled randomly from the input point cloud.

Examine the following CAD code carefully to understand the 3D object it generates and answer the question based on your
interpretation of the rendered image of that object.

SOL; Line:(221,128); Line:(221,223) ;Line:(128,223); Line:(128,128); Ext: (128,128,128,32,110,128,98,167,128, Newbody,
One-sided); EOS

Hint: the CAD code has the following syntax: CAD code consists of a sequence of CAD commands that describe a 3D
object. The commands fall into two categories: sketch and extrusion. Sketch commands are used to specify closed curves on
a 2D plane in 3D space. Each closed curve is referred as a loop, and one or more loops form a closed region called a profile.
A loop always starts with an indicator command <SOL> followed by a series of curve commands. All the curves on the loop
are in counterclockwise order, beginning with the curve whose starting point is at the most bottom-left. In total, there are three
possible curve commands: Line, Arc, and Circle. Line(x, y): a line, with x, y as line end-point. Arc(x, y, u, f): an arc, with x,y
as arc end-point, u as sweep angle and f as whether it is counter-clockwise, f=0 means it is counter-clockwise, f=1 means it is
not counter-clockwise. Circle(x, y, r): a circle, with x,y as the center point and r as the radius. The extrusion command has two
purposes: 1) It extrudes a sketch profile from a 2D plane into a 3D body, and the extrusion type can be either one-sided, symmetric,
or two-sided with respect to the profile’s sketch plane. 2) The command also specifies (through the parameter b in Ext) how to
merge the newly extruded 3D body with the previously created shape by one of the boolean operations: either creating a new body,
or joining, cutting or intersecting with the existing body. Ext(x, y, z, o, p, q, s, e, f, b, u): extrude operation, with x, y, z as the sketch
plane orientation, o, p, q as the sketch plane origin, s as the scale of the associated sketch profile, e, f as the extrude distances towards
both sides, b as the type of merge operation (could be New-body operation, join operation, cut operation and intersect operation)
and u as the extrude type (could be one-sided, symmetric or two-sided). <EOS> means the end of the code.

Question: How many faces does the CAD object in the image have?

(a) DeepCAD Representation

Examine the following CAD code carefully to understand the 3D object it generates and answer the question based on your
interpretation of the rendered image of that object.

import cadquery as cq
def make shape():

plane0 = cq.Plane(origin = (-0.75,-0.1406,0.0),xDir = (1.0,0.0,0.0),normal = (0.0,0.0,1.0))
w0 = cq.Workplane(plane0)
face0 = w0.sketch().face(w0.sketch().segment((0.0, 0.0), (0.7495, 0.0)).segment((0.7495, 0.0), (0.7495, 0.7656)).seg-

ment((0.7495, 0.7656), (0.0, 0.7656)).segment((0.0, 0.7656), (0.0, 0.0)).assemble(), mode = ’a’).finalize()
shape0 = face0.extrude(0.3046875, both=False)
return shape0

Question: How many faces does the CAD object in the image have?

(b) CadQuery Representation

Figure 10. Example of a CAD question from SGP-Bench in the DeepCAD representation (b) and using the CadQuery representation (c).
When asking the question in CadQuery format no hint is provided, while in DeepCAD format a long interpretative hint is required. The
choice of answers are A) 6, B) 4, C) 8 and D) 5. The correct answer is A) 6.

Question: How many holes does the CAD object in the image have?
A) Two, B) Three, C) Four, D) Five
Correct Answer: B

(a) Point cloud and corresponding CAD-specific question

The CAD object in the image has five holes.

(b) PointLLM output from point cloud

To determine the number of holes in the CAD object, let’s break down the CAD code step by step:
1. Extrusion Command:
Start;Ext:(128,130,128,128,130,128,128,128,NewBody,96);
This command sets up an extrusion with specific parameters and indicates that a new body will be created.
2. First Loop:
Line:(43,0);Arc:(213,0,255,43);Line:(213,85);Arc:(43,85,0,43);EOL;

- Line:(43,0) - A line from the starting point to (43,0).
- Arc:(213,0,255,43) - An arc with midpoint (213,0) and endpoint (255,43).
- Line:(213,85) - A line from the previous endpoint to (213,85).
- Arc:(43,85,0,43) - An arc with midpoint (43,85) and endpoint (0,43).
- EOL - End of the loop.

This forms a closed loop, which is a profile for extrusion.
3. Second Loop:
Circle:(43,43,43,51);EOL;

- Circle:(43,43,43,51) - A circle with the most left point at (43,43) and the most top point at (43,51).
- EOL - End of the loop.

This forms another closed loop, which is another profile for extrusion.
4. End of Sketch and Extrusion:
EOF;EOS;End;

- EOF - End of face.
- EOS - End of sketch.
- End - End of the code.

From the above analysis, we can see that the CAD object consists of:
- One main profile formed by the first loop.
- One circular profile formed by the second loop.

The circular profile represents a hole within the main profile. Since there is only one circular profile, the CAD object has one hole.
Answer: A

(c) GPT-4o output from CAD-SIGNet prediction

Let’s break down the CAD code step by step to understand the 3D object it generates and determine the number of holes.
1. Workplane Creation:
w0 = cq.Workplane(’XY’, origin=(0,0,1))
This line creates a workplane on the XY plane with an origin at (0,0,1).
2. Sketching the Shape:
r = w0.sketch()
This initializes a sketch on the workplane.
3. Defining the Shape:
.segment((-66,-34),(50,-34)) .segment((50,-32)) .arc((100,0),(50,32)) .segment((50,34)) .segment((-66,34)) .segment((-66,32)) .arc((-100,0),(-66,-32))
.close()
These lines define a closed shape with segments and arcs. The shape appears to be symmetrical along the Y-axis.
4. Adding Holes:
.assemble() .push([(-66,0)]).circle(10, mode=’s’) .push([(0,0)]).circle(10, mode=’s’) .push([(66,0)]).circle(10, mode=’s’) .finalize()
These lines add three circles (holes) to the shape at positions (-66,0), (0,0), and (66,0).
5. Extruding the Shape:
.extrude(-4)
This line extrudes the shape by -4 units, creating a 3D object with the defined shape and holes.
From the code, we can see that three circles (holes) are added to the shape. Therefore, the CAD object has three holes.
Answer: B

(d) GPT-4o output from CAD-Recode prediction

Figure 11. Example of Point cloud CAD-QA (a) and answers provided by PointLLM (b), CADSIGNet and GPT-4o (c) and
CAD-Recode and GPT-4o (d).

import cadquery as cq
w0 = cq.Workplane('XY', origin=(0, 0, 0))
r = w0.workplane(offset=-100 / 2).cylinder(100, 100)
.union(w0.workplane(offset=100 / 2).cylinder(100, 34))

(a) CAD-Recode output as CadQuery Python code.

Refactor the code, add functions and variables that can make the code easier to edit and more interpretable. Add in the code, sliders to edit the size of each primitive: import
cadquery as cq w0=cq.Workplane(’XY’,origin=(0,0,0)) r=w0.workplane(offset=-100/2).cylinder(100,100).union(w0.workplane(offset=100/2).cylinder(100,34))

(b) Prompt for GPT-4o
import cadquery as cq
from ipywidgets import interact, FloatSlider

Default parameters for the CAD model
default_base_diameter = 100
default_base_height = 100
default_top_diameter = 34
default_top_height = 100

def create_cylinder(workplane, diameter, height, offset):
"""Creates a cylinder on the specified workplane with a given diameter, height, and offset."""
return workplane.workplane(offset=offset).cylinder(height, diameter / 2)

def build_model(base_diameter=default_base_diameter, base_height=default_base_height,
top_diameter=default_top_diameter, top_height=default_top_height):

"""Builds the model with adjustable base and top cylinder dimensions."""
Initialize the main workplane
w0 = cq.Workplane("XY", origin=(0, 0, 0))

Create base and top cylinders
base_cylinder = create_cylinder(w0, base_diameter, base_height, offset=-base_height / 2)
top_cylinder = create_cylinder(w0, top_diameter, top_height, offset=base_height / 2)

Union the cylinders
model = base_cylinder.union(top_cylinder)
return model

Function to display the model interactively with sliders for each cylinder dimension
def display_model_with_sliders():

"""Interactive display function with sliders for base and top cylinder dimensions."""

Sliders for base and top cylinder dimensions
base_diameter_slider = FloatSlider(value=default_base_diameter, min=10, max=200, step=5, description="Base Diameter")
base_height_slider = FloatSlider(value=default_base_height, min=10, max=200, step=5, description="Base Height")
top_diameter_slider = FloatSlider(value=default_top_diameter, min=10, max=200, step=5, description="Top Diameter")
top_height_slider = FloatSlider(value=default_top_height, min=10, max=200, step=5, description="Top Height")

Update function to apply slider changes
@interact(

base_diameter=base_diameter_slider,
base_height=base_height_slider,
top_diameter=top_diameter_slider,
top_height=top_height_slider

)
def update_model(base_diameter, base_height, top_diameter, top_height):

Build and display the model
model = build_model(base_diameter, base_height, top_diameter, top_height)
show_object(model) # Use this in CQ-editor or a Jupyter environment

Execute the function to show sliders and interactive model
display_model_with_sliders()

(c) GPT-4o output: executable refactored code with interactive sliders

Base Diam.

Base Height

Top Diam.

Top Height

Base Diam.

Base Height

Top Diam.

Top Height

(d) Executed code produces interactive sliders that the designer can use to modify the size of the primitives.

Figure 12. Editing pipeline: given a predicted code from CAD-Recode from a point cloud (a), a generic prompt can be constructed to
refactor the predicted code to enhance editibility (b). The output from GPT-4o-2024-08-06 is shown in (c), and the generated sliders and
possible CAD edits are depicted in (d).

References
[1] Kseniya Cherenkova, Djamila Aouada, and Gleb Gusev.

Pvdeconv: Point-voxel deconvolution for autoencoding cad
construction in 3d. In ICIP, pages 2741–2745, 2020. 2

[2] CADQuery Developers. Cadquery: A python paramet-
ric cad scripting framework. https://cadquery.
readthedocs.io/, 2024. Accessed: 2024-10-22. 1

[3] Elona Dupont, Kseniya Cherenkova, Dimitrios Mallis, Gleb
Gusev, Anis Kacem, and Djamila Aouada. Transcad: A hi-
erarchical transformer for cad sequence inference from point
clouds. In Eur. Conf. Comput. Vis., 2024. 4

[4] Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali,
Kseniya Cherenkova, Anis Kacem, and Djamila Aouada.
Cad-signet: Cad language inference from point clouds using
layer-wise sketch instance guided attention. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 4713–4722, 2024. 2, 4

[5] Joseph George Lambourne, Karl Willis, Pradeep Kumar Ja-
yaraman, Longfei Zhang, Aditya Sanghi, and Kamal Rahimi
Malekshan. Reconstructing editable prismatic cad from
rounded voxel models. In SIGGRAPH Asia, pages 1–9,
2022. 4

[6] Weijian Ma, Shuaiqi Chen, Yunzhong Lou, Xueyang Li, and
Xiangdong Zhou. Draw step by step: Reconstructing cad
construction sequences from point clouds via multimodal
diffusion. In IEEE Conf. Comput. Vis. Pattern Recog., pages
27154–27163, 2024. 4

[7] Dimitrios Mallis, Ali Sk Aziz, Elona Dupont, Kseniya
Cherenkova, Ahmet Serdar Karadeniz, Mohammad Sadil
Khan, Anis Kacem, Gleb Gusev, and Djamila Aouada. Sharp
challenge 2023: Solving cad history and parameters recovery
from point clouds and 3d scans. overview, datasets, metrics,
and baselines. In CVPRW, 2023. 2, 4

[8] OpenAI. Gpt-4 technical report, 2024. 8
[9] Thomas Paviot. Pythonocc - 3d cad/bim/plm/cam frame-

work, 2022. 1
[10] Zeju Qiu, Weiyang Liu, Haiwen Feng, Zhen Liu, Tim Z

Xiao, Katherine M Collins, Joshua B Tenenbaum, Adrian
Weller, Michael J Black, and Bernhard Schölkopf. Can large
language models understand symbolic graphics programs?
arXiv preprint arXiv:2408.08313, 2024. 8

[11] Qwen Team. Qwen2-1.5b. https://huggingface.
co/Qwen/Qwen2-1.5B, 2024. Accessed: Nov. 2024. 1

[12] Karl DD Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao
Du, Joseph G Lambourne, Armando Solar-Lezama, and Wo-
jciech Matusik. Fusion 360 gallery: A dataset and environ-
ment for programmatic cad construction from human design
sequences. ACM TOG, 40(4):1–24, 2021. 4

[13] Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A
deep generative network for computer-aided design models.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 6772–
6782, 2021. 1, 3, 4, 8

[14] Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-
Yi Cheng, Pradeep Kumar Jayaraman, and Yasutaka Fu-
rukawa. Skexgen: Autoregressive generation of cad con-
struction sequences with disentangled codebooks. In ICML,
pages 24698–24724. PMLR, 2022. 1

[15] Xiang Xu, Pradeep Kumar Jayaraman, Joseph G Lambourne,
Karl DD Willis, and Yasutaka Furukawa. Hierarchical neural
coding for controllable cad model generation. ICML, 2023.
4

https://cadquery.readthedocs.io/
https://cadquery.readthedocs.io/
https://huggingface.co/Qwen/Qwen2-1.5B
https://huggingface.co/Qwen/Qwen2-1.5B

	Training Details
	Training Dataset Generation Algorithm
	Real-World CC3D Dataset
	Further Experimental Results
	Test-time Sampling
	Interpretability and CAD-QA
	Representation and CAD-QA
	Point Cloud and CAD-QA

	Editing Pipeline Details

