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1. Our approach
In this section, we will further discuss more details re-
garding our proposed approach, MultiADS.

1.1. Knowledge Base for Anomalies and Defect-
Aware Text Prompts Design

We construct text prompts based on the information we
obtain from the Knowledge Base for Anomalies (KBA).
This allows for leveraging the specificity of the defect
type for each product class. The procedure for defect-
aware prompt construction is consistently applied to
each dataset. It should be noted, however, that the text
prompt regarding the normal state and text template are
the same for all datasets.

We conduct experiments on three commonly known
datasets, namely MVTec-AD [1], VisA [22], MPDD [9],
MAD [19], Real-IAD [15]. We construct multiple dis-
tinct defect-aware text prompts and 1 for the normal
state, for each dataset. We construct text prompts that
represent the normal or good state (without defects) of
the images, using the following text prompt template:

normal = [ “[cls]”, “flawless [cls]”, “perfect [cls]”,
“unblemished [cls]”, “[cls] without flaw”, “[cls] with-
out defect”, “[cls] without damage”, “[cls] with im-
maculate quality”, “[cls] without any imperfections”,
’[cls] in ideal condition” ]

where [cls] represents a product class from a given
dataset. We apply the same normal state design for
all datasets, utilizing the text template as in [2] for all
datasets as follows:

text-template = [“a bad photo of a {}.”,“a low res-
olution photo of the {}.”, “a bad photo of the {}.”, “a
cropped photo of the {}.”, “a bright photo of a {}.”, “a
dark photo of the {}.”, “a photo of my {}.”, “a photo
of the cool {}.”, “a close-up photo of a {}.”, “a black
and white photo of the {}.”, “a bright photo of the {}.”,
“a cropped photo of a {}.”, “a jpeg corrupted photo of a
{}.”, “a blurry photo of the {}.”, “a photo of the {}.”, “a
good photo of the {}.”, “a photo of one {}.”, “a close-up
photo of the {}.”, “a photo of a {}.”, “a low resolution
photo of a {}.”, “a photo of a large {}.”, “a blurry photo
of a {}.”, “a jpeg corrupted photo of the {}.”, “a good
photo of a {}.”, “a photo of the small {}.”, “a photo of
the large {}.”, “a black and white photo of a {}.”, “a
dark photo of a {}.”, “a photo of a cool {}.”, “a photo

of a small {}.”, “this is a {} in the scene.”, “this is the
{} in the scene.”, “this is one {} in the scene.”, “there is
the {} in the scene.”, “there is a {} in the scene.”]

where {} is filled with content from the normal and
defect-aware text prompts.

An example of a text-prompt representing the normal
state for product class [cls] = cable is as follows:

Snormal = {“A bad photo of cable.”,
· · · ,

“There is a cable in ideal condition in the scene.”}
(1)

Similarly, we construct text prompts representing dis-
tinct defect types. An example of a text-prompt repre-
senting the bent defect type for product class [cls] =
cable is as follows:

Sbent = {“A bad photo of cable has a bent defect.”,
· · · ,

“There is a bent edge on cable in the scene.”}
(2)

In Tables 1-5, we show the defect-aware text prompts
for each defect type for all datasets, respectively. Note
that for shared defect types among the datasets, such as
bent, hole, and scratch, we use the same defect-aware
text prompts among all datasets.

We provide the defined defect-aware text prompts, at-
tached to the source code. The simplest way is to adapt
the defect-aware information in a suitable manner based
on the design of other approaches that aim to investigate
defect types in anomaly detection tasks.

In the main manuscript, we mention that the KBA
contains the information for defect variations and de-
fect type properties (attributes). Also, we include syn-
onyms of defect types such as a slight curve, which can
also help VLMs to capture the similarity between image-
text pairs. Likewise, we apply the same strategy for the
construction of defect-aware text prompts for all defect
types. More examples are provided in Tables 1-5. Addi-
tionally, Tables 7-12 show variations of each defect type
observed from all given datasets, for example bent con-
tains variations bent lead, bent wire, and bent edge.
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Table 1. Defect-Aware text prompts for all defect types of the VisA dataset. [cls] represents a variable that takes as value all product
classes in the VisA dataset.

Defect Type Defect-Aware Text Prompts Defect Type Defect-Aware Text Prompts

Bent

“[cls] has a bent defect”
“flawed [cls] with a bent lead”

“a bend found in [cls]”
“[cls] has a slight curve defect”
“[cls] with noticeable bending”

“a bent wire on [cls]”

Broken

“[cls] with a breakage defect”
“broken [cls]”

“[cls] with broken defect”
“[cls] shows breakage”

“broken or cracked areas on [cls]”
“visible breakage on [cls]“

Bubble

“[cls] with bubbles defect”
“bubbles seen on [cls]”

“[cls] with bubble marks”
“air bubbles in [cls]”

“[cls] contains bubble defects”
“small bubbles on [cls] surface“

Burnt

“[cls] with a burnt defect”
“[cls] shows burn marks”

“burnt areas on [cls]”
“[cls] with signs of burning”

“scorch marks on [cls]”
“[cls] appears slightly burnt“

Chip

“[cls] with chip defect”
“[cls] with fragment broken defect”

“chipped areas on [cls]”
“[cls] with chipped parts”

“broken fragments on [cls]”
“chip marks found on [cls]“

Crack

“[cls] with a crack defect”
“[cls] has a visible crack”
“cracked areas on [cls]”

“[cls] with surface cracking”
“fine cracks found on [cls]”

“[cls] shows crack lines“

Damage

“[cls] has a damaged defect”
“flawed [cls] with damage”

“[cls] shows signs of damage”
“damage found on [cls]”

“[cls] with visible wear and tear”
“[cls] with structural damage“

Extra

“[cls] with extra thing”
“[cls] has a defect with extra thing”

“extra material on [cls]”
“[cls] contains additional pieces”

“[cls] with extra component defect”
“unwanted additions on [cls]“

Hole

“[cls] has a hole defect”
“a hole on [cls]”

“visible hole on [cls]”
“[cls] has small punctures”
“[cls] shows perforations”

“hole present on [cls]“

Melded

“[cls] with melded defect”
“melded parts on [cls]”
“[cls] has fused areas”
“fused spots on [cls]”

“melded areas on [cls]”
“[cls] with melded material“

Melt

“[cls] with melt defect”
“melted areas on [cls]”
“[cls] shows melting”

“signs of melting on [cls]”
“[cls] with melted spots”

“[cls] has a melted appearance“

Missing

“[cls] with a missing defect”
“flawed [cls] with something missing”

“[cls] has missing parts”
“missing components on [cls]”

“absent pieces in [cls]”
“[cls] is incomplete“

Partical

“[cls] with particles defect”
“[cls] has foreign particles”

“small particles on [cls]”
“[cls] with unwanted particles”
“contaminants found on [cls]”
“[cls] with visible particles“

Scratch

“[cls] has a scratch defect”
“flawed [cls] with a scratch”
“scratches visible on [cls]”

“[cls] has surface scratches”
“small scratches found on [cls]”

“[cls] with scratch marks“

Spot

“[cls] with spot defect”
“spots visible on [cls]”

“flawed [cls] with spots”
“[cls] with visible spotting”
“[cls] shows small spots”
“surface spots on [cls]“

Stuck

“[cls] with a stuck defect”
“[cls] stuck together”
“[cls] has stuck parts”

“adhesive issue causing [cls] to stick”
“[cls] is partially stuck”

“[cls] with adhesion defect“

Weird
Wick

“[cls] with a weird wick defect”
“[cls] has an unusual wick”

“the wick on [cls] appears odd”
“[cls] with a strangely shaped wick”

“irregular wick found on [cls]”
“odd wick defect on [cls]“

Wrong
Place

“[cls] with defect that something on wrong place”
“[cls] has a misplaced defect”
“flawed [cls] with misplacing”

“misaligned part on [cls]”
“[cls] shows parts out of place”

“misplacement detected on [cls]“
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Table 2. Defect-Aware text prompts for all defect types of the MVTec-AD dataset. [cls] represents a variable that takes as value all
product classes in the MVTec-AD dataset.

Defect Type Defect-Aware Text Prompts Defect Type Defect-Aware Text Prompts

Bent

“[cls] has a bent defect”
“flawed [cls] with a bent lead”

“a bend found in [cls]”
“[cls] has a slight curve defect”
“[cls] with noticeable bending”

“a bent wire on [cls]”

Broken

“[cls] has a broken defect”
“flawed [cls] with breakage”
“visible breakage on [cls]”
“[cls] with broken areas”

“[cls] shows signs of breaking”
“cracked or broken spots on [cls]”

Color

“[cls] has a color defect”
“inconsistent color on [cls]”

“[cls] with color discrepancies”
“[cls] has a noticeable color difference”

“[cls] with irregular coloring”
“[cls] has off-color patches”

Contamination

“[cls] has a contamination defect”
“foreign particles on [cls]”

“[cls] is contaminated”
“[cls] contains contaminants”

“[cls] has impurity issues”
“traces of contamination on [cls]”

Crack

“[cls] has a crack defect”
“a crack is present on [cls]”

“cracked area on [cls]”
“[cls] with noticeable cracking”

“fine cracks found on [cls]”
“[cls] shows surface cracks”

Cut

“[cls] has a cut defect”
“cut marks on [cls]”

“[cls] with visible cuts”
“a cut detected on [cls]”
“[cls] is sliced or cut”

“surface cut seen on [cls]”

Damaged

“[cls] has a damaged defect”
“flawed [cls] with damage”
“[cls] with visible damage”
“damaged areas on [cls]”

“physical damage seen on [cls]”
“noticeable wear on [cls]”

Fabric

“[cls] has a fabric defect”
“[cls] has a fabric border defect”
“[cls] has a fabric interior defect”

“fabric quality issues on [cls]”
“[cls] with textile irregularities”

“fabric borders on [cls] show defects”

Faulty
Imprint

“[cls] has a faulty imprint defect”
“[cls] has a print defect”

“incorrect printing on [cls]”
“misaligned print on [cls]”

“printing errors present on [cls]”
“[cls] has a blurred print defect”

Glue

“[cls] has a glue defect”
“[cls] has a glue strip defect”

“excess glue on [cls]”
“[cls] with uneven glue application”

“[cls] has visible glue spots”
“misplaced glue seen on [cls]”

Hole

“[cls] has a hole defect”
“a hole on [cls]”

“visible hole on [cls]”
“[cls] with punctures”

“small hole found in [cls]”
“perforations present on [cls]”

Liquid

“[cls] has a liquid defect”
“flawed [cls] with liquid”

“[cls] with oil”
“liquid marks on [cls]”

“[cls] with liquid residue”
“stains from liquid on [cls]”

Misplaced

“[cls] has a misplaced defect”
“flawed [cls] with misplacing”

“[cls] shows misalignment”
“misplaced parts on [cls]”

“[cls] with incorrect positioning”
“positioning defects on [cls]”

Missing

“[cls] has a missing defect”
“flawed [cls] with something missing”

“[cls] has missing components”
“missing parts on [cls]”

“[cls] shows absent pieces”
“certain parts missing from [cls]”

Poke

“[cls] has a poke defect”
“[cls] has a poke insulation defect”

“visible poke mark on [cls]”
“[cls] has puncture marks”

“a poke flaw on [cls]”
“small poke defect on [cls]”

Rough

“[cls] has a rough defect”
“rough texture on [cls]”

“uneven surface on [cls]”
“[cls] is coarser than expected”

“surface roughness seen on [cls]”
“texture defects on [cls]”

Scratch

“[cls] has a scratch defect”
“flawed [cls] with a scratch”
“visible scratches on [cls]”

“[cls] with surface scratches”
“minor scratches seen on [cls]”

“[cls] shows scratch marks”

Squeeze

“[cls] has a squeeze defect”
“flawed [cls] with a squeeze”

“squeezed area on [cls]”
“[cls] has compression marks”

“[cls] appears squeezed”
“flattened areas on [cls]”

Thread

“[cls] has a thread defect”
“flawed [cls] with a thread”

“loose threads on [cls]”
“[cls] has visible threads”

“untrimmed threads on [cls]”
“threads sticking out on [cls]”
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Table 3. Defect-Aware text prompts for all defect types of the MPDD dataset. [cls] represents a variable that takes as value all
product classes in the MPDD dataset.

Defect Type Defect-Aware Text Prompts Defect Type Defect-Aware Text Prompts

Bent

“[cls] has a bent defect”
“flawed [cls] with a bent lead”

“a bend found in [cls]”
“[cls] has a slight curve defect”
“[cls] with noticeable bending”

“a bent wire on [cls]”

Defective
Painting

“[cls] with a defective painting defect”
“flawed [cls] with painting imperfections”

“[cls] has painting inconsistencies”
“uneven painting on [cls]”

“[cls] shows poor paint quality”
“paint defects present on [cls]”

Flattening

“[cls] becomes flattened”
“[cls] has a flatten defect”

“flattening observed on [cls]”
“[cls] appears compressed”

“[cls] is flattened or squashed”
“deformation detected on [cls]”

Hole

“[cls] with a hole defect”
’a hole on [cls]”

’visible hole in [cls]”
“[cls] with puncture marks”

’hole detected in [cls]”
“[cls] has small perforations”

Mismatch

“[cls] with bend and parts mismatch defec”
“[cls] with parts mismatch defect”

“[cls] has mismatched parts”
“mismatched components on [cls]”

“bend and parts misalignment in [cls]”
“[cls] shows part misplacement”

Rust

“[cls] with a rust defect”
“[cls] has rust patches”

“rust spots on [cls]”
“visible rust on [cls]”

“[cls] shows signs of rusting”
“[cls] affected by corrosion”

Scratch

“[cls] has a scratch defect”
“flawed [cls] with a scratch’
’scratches visible on [cls]”

“[cls] with surface scratches”
“[cls] has scratch marks”

“minor scratches found on [cls]”

Table 4. Defect-Aware text prompts for all defect types of the MAD dataset. [cls] represents a variable that takes as value all
product classes in the MAD dataset.

Defect Type Defect-Aware Text Prompts Defect Type Defect-Aware Text Prompts

Burr

“[cls] has a burr defect”
“sharp burr found on [cls]”

“[cls] has excess material on edges”
“burr formation detected on [cls]”

“[cls] exhibits rough edges”
“ [cls] shows protruding material”

Missing

“[cls] has a missing defect”
“flawed [cls] with something missing”

“[cls] has missing components”
“missing parts on [cls]”

“[cls] shows absent pieces”
“certain parts missing from [cls]”

Stain
“[cls] with a stain defect”

“inconsistent color on [cls]”
“[cls] with color discrepancies”

2. Datasets
Due to space limitations in the main manuscript, here
we describe in detail the industrial anomaly detection
datasets: MVTec-AD [1], VisA [22], MPDD [9], MAD
(simulated and real) [19], and Real-IAD [15]. Key
statistics on the datasets are shown in Table 6, such as
categories, distinct classes, and the number of samples.
MVTec-AD dataset consists of two categories, namely
objects and textures, and 15 product classes. For each
product, there can be a different number of defects, as
shown in Table 7. This number varies from 1 up to 8,
but for the textures, it is 5 for all products. We classify
each defect to the defect type as we defined before.

Additionally, we provide more details about defect
types in order to highlight the importance and the de-

sign of our defect-aware text prompts. Thus, details
of the VisA datasets are shown in Table 8; the prod-
ucts are categorized into complex structures, multiple
instances (an image with multiple products of the same
class, e.g., multiple candles, multiple capsules), and sin-
gle instances. In total, it consists of 130 defect types if
we consider different combinations of defect types, but
if we consider the combination as a single defect type,
then the VisA dataset has 84 defect types and 40 distinct
defect types. In Table 8, some defect types are included
as part of the Combined defect type, which consists of
multiple defect types. The number of defect types for
each product varies between 5 and 9 defect types. In
Table 9, we show detailed information regarding the
MPDD dataset, which consists of 6 product types and 11
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Table 5. Defect-Aware text prompts for all defect types of the Real-IAD dataset. [cls] represents a variable that takes as value all
product classes in the Real-IAD dataset.

Defect Type Defect-Aware Text Prompts Defect Type Defect-Aware Text Prompts

Pit
“[cls] has a pit defect”

“Small cavities or pits detected on [cls]”
“[cls] with color discrepancies”

Scratch

“[cls] has a scratch defect”
“flawed [cls] with a scratch’
’scratches visible on [cls]”

“[cls] with surface scratches”
“[cls] has scratch marks”

“minor scratches found on [cls]”

Deformation

“[cls] has a deformation defect”
“[cls] appears twisted or misshaped”

“Structural distortion detected on [cls]”
“Unexpected shape deformation found in [cls]”

“[cls] exhibits rough edges”
“ [cls] shows signs of bending under stress”

Deformation

“[cls] has an abrasion defect”
“[cls] has noticeable or scuffing”

“[cls] is affected by continuous rubbing”
“Worn or scraped areas found on [cls]”

Damaged

“[cls] has a damaged defect”
“flawed [cls] with damage”
“[cls] with visible damage”
“damaged areas on [cls]”

“physical damage seen on [cls]”
“noticeable wear on [cls]”

Missing

“[cls] has a missing defect”
“flawed [cls] with something missing”

“[cls] has missing components”
“missing parts on [cls]”

“[cls] shows absent pieces”
“certain parts missing from [cls]”

Foreign

“[cls] has foreign objects defect”
“[cls] has a foreign defect”

“Unexpected foreign material on [cls]”
“[cls] contains an unwanted foreign object”

“[cls] with extra thing”
“[cls] has a defect with extra thing”

Contamination

“[cls] has a contamination defect”
“foreign particles on [cls]”

“[cls] is contaminated”
“[cls] contains contaminants”

“[cls] has impurity issues”
“traces of contamination on [cls]”

Table 6. Key statistics on the datasets.

Dataset Category |C| Normal / Anomalous
Samples

MVTec-AD [1]
Object
Texture 15 4,096 / 1,258

VisA [22] Object 12 9,621 / 1,200
MPDD [9] Object 6 1,064 / 282
MAD [19] Object 20 5,231 / 4,902

Real-IAD [15] Object 30 99,721 / 51,329

defect types, from which 8 are distinct defect types. The
number of defect types for each product varies between
1 and 3 defect types. The MAD dataset consists of multi-
pose views of twenty LEGO toys (product classes), with
up to three anomaly types. It has simulated and real im-
ages. The Real-IAD dataset consists of thirty product
categories, up to four defect types per category, and a
larger proportion of defect area and range of defect ra-
tios than other datasets. We utilize single-view image
data. The details are illustrated in Table 6.

We apply the default normalization of CLIP [13] to
all datasets. After normalization, we resize the images to
a resolution of (518, 518) to obtain an appropriate visual
feature map resolution.
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Table 7. Detailed statistics on the MVTec-AD dataset.

Category Product Defects Defect Type Original Test
Anomalous Normal

Objects

Bottle
Broken Large
Broken Small
Contamination

Broken
Broken

Contamination

20
22
21

20

Cable

Bent Wire
Cable Swap
Combined

Cut Inner Insulation
Cut Outer Insulation

Missing Cable
Missing Wire

Poke Insulation

Bent
Misplaced
Combined

Cut
Cut

Missing
Missing

Poke

13
12
11
14
10
12
10
10

58

Capsule

Crack
Faulty Imprint

Poke
Scratch
Squeeze

Crack
Faulty Imprint

Poke
Scratch
Squeeze

23
22
21
23
20

23

Hazelnut

Crack
Cut
Hole
Print

Crack
Cut
Hole

Faulty Imprint

18
17
18
17

40

Metal Nut

Bent
Color
Flip

Scratch

Bent
Color

Misplaced
Scratch

25
22
23
23

22

Pill

Color
Combined

Contamination
Crack

Faulty Imprint
Pill Type
Scratch

Color
Combined

Contamination
Crack

Faulty Imprint
Damaged
Scratch

25
17
21
26
19
9

24

26

Screw

Manipulated Front
Scratch Head
Scratch Neck
Thread Side
Thread Top

Bent
Scratch
Scratch
Thread
Thread

24
24
25
23
23

41

Toothbrush Defective Damaged 12 30

Transistor

Bent Lead
Cut Lead

Damaged Case
Misplaced

Bent
Cut

Damaged
Misplaced

10
10
10
10

60

Zipper

Broken Teeth
Combined

Fabric Border
Fabric Interior

Rough
Split Teeth

Squeezed Teeth

Broken
Combined

Fabric
Fabric
Rough

Misplaced
Squeezed

19
16
17
16
17
18
16

32

Textures

Carpet

Color
Cut
Hole

Metal Contamination
Thread

Color
Cut
Hole

Contamination
Thread

19
17
17
17
19

28

Grid

Bent
Broken
Glue

Metal Contamination
Thread

Bent
Broken
Glue

Contamination
Thread

12
12
11
11
11

21

Leather

Color
Cut
Fold
Glue
Poke

Color
Cut

Misplaced
Glue
Poke

19
19
17
19
18

32

Tile

Crack
Glue Strip

Gray Stroke
Oil

Rough

Crack
Glue

Damaged
Liquid
Rough

17
18
16
18
15

33

Wood

Color
Combined

Hole
Liquid
Scratch

Color
Combined

Hole
Liquid
Scratch

8
11
10
10
21

19

Table 8. Detailed statistics on the VisA dataset. We relabeled ev-
ery image originally marked as “combined” in the VisA dataset
by identifying each individual defect it contains and assigning
the image to all corresponding defect categories.

Category Product Defects Defect Type Test
Anomalous Normal

Complex
Structure

Pcb1

Bent Bent 15

100Melt Melt 52
Missing Missing 20
Scratch Scratch 21

Pcb2

Bent Bent 15

100Melt Melt 54
Missing Missing 19
Scratch Scratch 19

Pcb3

Bent Bent 20

101Melt Melt 41
Missing Missing 20
Scratch Scratch 25

Pcb4

Burnt Burnt 8

101

Scratch Scratch 17
Dirt Dirt 39

Damage Damage 19
Extra Extra 26

Missing Missing 33
Wrong Place Wrong Place 12

Multiple
Instances

Candle

Chunk of Wax Missing Missing 15

100

Damaged Corner of Packaging Damaged 25
Different Colour Spot Spot 22
Extra Wax in Candle Extra 9

Foreign Particals on Candle Particals 17
Wax Melded Out of the Candle Melded 13

Weird Candle Wick Weird Wick 11

Capsules

Bubble Bubble 49

60
Discolor Discolor 15
Scratch Scratch 15
Leak Leak 20

Misheap Damaged 20

Macaroni1

Chip Around Edge and Corner Chip 25

100

Different Colour Spot Spot 37Similar Colour Spot
Small Cracks Crack 14

Middle Breakage Broken 10
Small Scratches Scratches 27

Macaroni2

Breakage down the Middle Broken 10

100

Color Spot Similar to the Object Spot 35Different Color Spot
Small Chip Around Edge Chip 25

Small Cracks Cracks 12
Small Scratches Scratches 25

Single
Instance

Cashew

Burnt Burnt 15

50

Corner or Edge Breakage Broken 25Middle Breakage
Different Colour Spot Spot 25Same Colour Spot

Small Holes Hole 21
Small Scratches Scratch 16
Stuck Together Stuck 6

Chewinggum

Chunk of Gum Missing Missing 70

50
Corner Missing

Scratches Scratch 14
Similar Colour Spot Spot 25

Small Cracks Crack 28

Fryum

Burnt Burnt 9

50

Corner or Edge Breakage Broken 30Middle Breakage
Different Colour Spot Spot 36Similar Colour Spot
Fryum Stuck Together Stuck 20

Small Scratches Scratch 9

Pipe Fryum

Burnt Burnt 16

50

Corner and Edge Breakage Broken 25
Different Colour Spot Spot 31Similar Colour Spot

Small Scratches Scratch 22
Stuck Together Stuck 10
Small Cracks Crack 10
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Table 9. Detailed statistics on the MPDD dataset.

Product Defects Defect Type Original Test
Anomalous Normal

Bracket Black
Hole

Scratches
Hole

Scratch
12
35 32

Bracket Brown
Bend Mismatch
Parts Mismatch

Mismatch
Mismatch

17
45 26

Bracket White
Defective Painting

Scratches
Defective Painting

Scratch
13
17 30

Connector Parts Mismatch Mismatch 14 30

Metal Plate
Major Rust
Scratches
Total Rust

Rust
Scratch

Rust

14
34
23

26

Tubes Anomalous Flattening 69 32

Table 10. Detailed statistics on the MAD-real dataset.

Product Defects Defect Type Original Test
Anomalous Normal

Bear Stains Stains 24 5
Bird Missing Missing 22 5

Elephant Missing Missing 18 5
Parrot Missing Missing 23 5
Puppy Stains Stains 20 5

Scorpion Missing Missing 23 5
Turtle Stains Stains 21 5

Unicorn Missing Missing 21 5
Whale Stains Stains 32 5

Table 11. Detailed statistics on the MAD-sim dataset.

Product Defects Defect Type Original Test
Anomalous Normal

Bear
Burrs

Missing
Stains

Burrs
Missing
Stains

88
112
59

36

Bird
Burrs

Missing
Stains

Burrs
Missing
Stains

51
160
40

30

Cat
Burrs

Missing
Stains

Burrs
Missing
Stains

98
151
58

36

Elephant
Burrs

Missing
Stains

Burrs
Missing
Stains

72
149
55

36

Gorilla
Burrs

Missing
Stains

Burrs
Missing
Stains

67
137
35

20

Mallard
Burrs

Missing
Stains

Burrs
Missing
Stains

27
157
33

20

Obesobeso
Burrs

Missing
Stains

Burrs
Missing
Stains

101
123
61

36

Owl
Burrs

Missing
Stains

Burrs
Missing
Stains

41
115
44

30

Parrot
Burrs

Missing
Stains

Burrs
Missing
Stains

29
131
42

36

Pheonix
Burrs

Missing
Stains

Burrs
Missing
Stains

86
150
69

36

Pig
Burrs

Missing
Stains

Burrs
Missing
Stains

76
138
70

36

Puppy
Burrs

Missing
Stains

Burrs
Missing
Stains

63
125
47

36

Sabertooth
Burrs

Missing
Stains

Burrs
Missing
Stains

58
136
47

36

Scorpion
Burrs

Missing
Stains

Burrs
Missing
Stains

61
121
53

36

Sheep
Burrs

Missing
Stains

Burrs
Missing
Stains

39
150
63

36

Swan
Burrs

Missing
Stains

Burrs
Missing
Stains

66
143
41

36

Turtle
Burrs

Missing
Stains

Burrs
Missing
Stains

32
130
35

20

Unicorn
Burrs

Missing
Stains

Burrs
Missing
Stains

55
132
35

20

Whale
Burrs

Missing
Stains

Burrs
Missing
Stains

71
127
53

30

Zalika
Burrs

Missing
Stains

Burrs
Missing
Stains

56
130
57

36
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Table 12. Detailed statistics on the Real-IAD dataset (Part I).

Product Defects Defect Type Original Test
Normal Anomalous

Audiojack

Deformation
Scratch
Missing

Contamination

Deformation
Scratch
Missing

Contamination

398

126
4

56
27

Bottle Cap

Pit
Scratch

Missing Parts
Contamination

Pit
Scratch

Missing Parts
Contamination

369

65
125
1

73

Button Battery

Pit
Abrasion
Scratch

Contamination

Pit
Abrasion
Scratch

Contamination

291

123
68
109
117

End Cap

Scratch
Damage

Missing Parts
Contamination

Scratch
Damage

Missing Parts
Contamination

289

92
119
133
80

Eraser

Pit
Scratch

Missing Parts
Contamination

Pit
Scratch

Missing Parts
Contamination

389

36
101
30
68

Fire Hood

Pit
Scratch

Missing Parts
Contamination

Pit
Scratch

Missing Parts
Contamination

418

33
51
62
23

Mint
Missing Parts

Foreign Objects
Contamination

Missing Parts
Foreign Objects
Contamination

305
111
197
142

Mounts
Pit

Missing Parts
Contamination

Pit
Missing Parts
Contamination

385
30
131
79

Pcb

Scratch
Missing Parts

Foreign Objects
Contamination

Scratch
Missing Parts

Foreign Objects
Contamination

278

103
104
129
109

Phone Battery

Pit
Scratch
Damage

Contamination

Pit
Scratch
Damage

Contamination

349

38
28
125
110

Plastic Nut

Pit
Scratch

Missing Parts
Contamination

Pit
Scratch

Missing Parts
Contamination

442

14
13
56
35

Plastic Plug

Pit
Scratch

Missing Parts
Contamination

Pit
Scratch

Missing Parts
Contamination

368

121
58
31
52

Porcelain Doll
Abrasion
Scratch

Contamination

Abrasion
Scratch

Contamination
402

64
43
89

Regulator
Scratch

Missing Parts
Scratch

Missing Parts 477
3

63

Rolled Strip Base
Pit

Missing Parts
Contamination

Pit
Missing Parts
Contamination

250
170
167
172

Sim Card Set
Abrasion
Scratch

Contamination

Abrasion
Scratch

Contamination
305

148
80
168

Switch
Scratch

Missing Parts
Contamination

Scratch
Missing Parts
Contamination

266
164
152
161

Tape
Damage

Missing Parts
Contamination

Damage
Missing Parts
Contamination

397
128
76
21

Table 13. Detailed statistics on the Real-IAD dataset (Part II).

Product Defects Defect Type Original Test
Normal Anomalous

Terminalblock
Pit

Missing Parts
Contamination

Pit
Missing Parts
Contamination

308
142
145
106

Toothbrush
Abrasion

Missing Parts
Contamination

Abrasion
Missing Parts
Contamination

272
170
137
149

Toy

Pit
Scratch

Missing Parts
Contamination

Pit
Scratch

Missing Parts
Contamination

250

125
127
126
126

Toy-brick

Pit
Scratch

Missing Parts
Contamination

Pit
Scratch

Missing Parts
Contamination

370

67
60
81
53

Transistor1
Deformation
Missing Parts
Contamination

Deformation
Missing Parts
Contamination

265
171
164
134

U Block

Abrasion
Scratch

Missing Parts
Contamination

Abrasion
Scratch

Missing Parts
Contamination

436

20
17
44
45

Usb

Deformation
Scratch

Missing Parts
Contamination

Deformation
Scratch

Missing Parts
Contamination

353

127
54
83
39

Usb Adaptor

Pit
Abrasion
Scratch

Contamination

Pit
Abrasion
Scratch

Contamination

361

85
22
62

111

Vcpill

Pit
Scratch

Missing Parts
Contamination

Pit
Scratch

Missing Parts
Contamination

398

50
11

107
40

Wooden Beads

Pit
Scratch

Missing Parts
Contamination

Pit
Scratch

Missing Parts
Contamination

304

67
96

112
117

Woodstick

Pit
Scratch

Missing Parts
Contamination

Pit
Scratch

Missing Parts
Contamination

442

7
12
69
28

Zipper

Deformation
Damage

Missing Parts
Contamination

Deformation
Damage

Missing Parts
Contamination

250

125
121
125
129
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3. Baselines
To demonstrate the performance of MultiADS, we com-
pare MultiADS with broad SOTA baselines. We run ex-
periments for April-GAN [2], and other baseline results
are taken from original papers. If the baseline does not
report results for a specific dataset, then the results are
taken from the latest publication, which includes these
results. Details regarding each baseline are given as fol-
lows:
• PaDiM [4] utilizes a pre-trained Convolutional Neural

Network (CNN) for patch embedding and multivari-
ate Gaussian distributions to get a probabilistic repre-
sentation for a one-class learning setting, the normal
class. Also, it considers the semantic relations of CNN
to improve the localization. Results are taken from
[2, 16] baselines. Source code is available at https:
//github.com/taikiinoue45/PaDiM.

• CLIP [13] is a powerful zero-shot classification
method. Results are taken from [20] baseline, and
to perform the anomaly detection task, they use two
classes of text prompt templates ”A photo of a normal
[cls]” and ”A photo of an anomalous [cls]”, where
”cls” denotes the target class name. The anomaly
score is computed according to Eq. [1] in the main
manuscript. As for anomaly segmentation, they ex-
tend the above computation to local visual embedding
to derive the segmentation. Source code is available at
https://github.com/openai/CLIP.

• CLIP-AC [13] employs an ensemble of text prompt
templates that are recommended for the ImageNet
dataset [13]. Results are taken from [20] baseline,
and they average the generated textual embeddings of
normal and anomaly classes, respectively, and com-
pute the probability and segmentation in the same
way as CLIP. Source code is available at https:
//github.com/openai/CLIP.

• RegAD [6] is a few-shot learning approach that lever-
ages feature registration as a category-agnostic ap-
proach. This approach trains a single generalizable
model and does not require re-training or parame-
ter fine-tuning for new categories. Results are taken
from the original publication. Source code is avail-
able at https://github.com/MediaBrain-
SJTU/RegAD.

• CoOp [18] is a representative method for prompt
learning. Results are taken from [20] baseline
for zero-shot setting and from [21] for few-shot
setting. To adapt CoOp to zero- and few-shot
anomaly detection, authors of [20, 21] replace its
learnable text prompt templates [V1][V2] . . . [VN ][cls]
with normality and abnormality text prompt tem-

plates, where Vi is the learnable word embed-
dings. The normality text prompt template is defined
as [V1][V2]...[VN ][normal][cls], and the abnormality
one is defined as [V1][V2] . . . [VN ][anomalous][cls].
Anomaly probabilities and segmentation are obtained
in the same way as for AnomalyCLIP, and all pa-
rameters are kept the same as in the original paper.
Source code is available at https://github.
com/KaiyangZhou/CoOp.

• CoCoOp [17] extends the CoOp work by generaliz-
ing the learned context to wider unseen classes within
the same dataset. CoCoOp learns a lightweight neu-
ral network to generate for each image an input-
conditional token (vector), and the proposed dynamic
prompts adapt to each instance and are less sensitive
to class shift. Results are taken from [20] baseline.
Source code is available at https://github.
com/KaiyangZhou/CoOp.

• PatchCore [14] utilizes locally aggregated, mid-level
patch features over a local neighborhood to ensure
the retention of sufficient spatial context. Patch-
Core employs a memory bank for patch features
to leverage nominal context at test time by using
a greedy coreset subsampling. Results are taken
from [2] baseline. Source code is available at
https://github.com/amazon-science/
patchcore-inspection

• WinCLIP [8] is a SOTA zero-shot anomaly detection
method. Results for zero-shot settings are taken from
the original publication and for few-shot settings are
taken from [2] baseline. The authors design a large set
of text prompt templates specific to anomaly detection
and use a window scaling strategy to obtain anomaly
segmentation. Source code is available at https:
//github.com/caoyunkang/WinClip.

• April-GAN [2] is an improved version of WinCLIP.
We conducted experiments with this approach and
all parameters are kept the same as in their paper.
April-GAN first adjusts the text prompt templates and
then introduces learnable linear projections to improve
local visual semantics to derive more accurate seg-
mentation. Source code is available at https://
github.com/ByChelsea/VAND-APRIL-GAN.

• GraphCore [16] is a few-shot learning approach that
utilizes memory banks to store image features. Re-
sults are taken from the original publication. They em-
ploy graph representation (Graph Neural Networks) to
provide a visual isometric invariant feature (VIIF) as
an anomaly measurement feature. The VIIF reduces
the size of redundant features stored in memory banks.
Results are taken from the original publication. The
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authors have not provided a link to the source code
yet.

• FastRecon [5] is a few-shot learning approach that
utilizes a few normal samples as a reference to re-
construct its normal version, and sample alignment
helps to detect anomalies. Thus, they propose a
regression algorithm with distribution regularization
for the transformation estimation. Results are taken
from the original publication. Source code is avail-
able at https://github.com/FzJun26th/
FastRecon.

• InCTRL [21] is a vision-language few-shot learning
model that proposes an in-context residual learning
approach. It aims to distinguish anomalies from nor-
mal samples by detecting residuals between test im-
ages and in-context few-shot normal sample prompts
from the target domain on the fly. Results are taken
from the original publication. Source code is avail-
able at https://github.com/mala-lab/
InCTRL.

• PromptAD [12] is a vision-language few-shot learn-
ing approach that learns text prompts for anomaly de-
tection. They propose to concatenate anomaly suf-
fixes to transpose the semantics of normal prompts,
in order to construct negative samples. They aim to
control the distance between normal and abnormal
prompt features through a hyperparameter. Results
are taken from the original publication. Source code
is available at https://github.com/FuNz-
0/PromptAD.

• AnomalyCLIP [20] is a SOTA zero-shot anomaly de-
tection method. Results are taken from the origi-
nal publication. This approach learns a vector rep-
resentation for text prompts for two states: nor-
mal and abnormal. They construct two templates of
text prompts, object-aware text prompts and object-
agnostic text prompts templates. Through an object-
agnostic text prompt template, they aim to learn the
shared patterns of different anomalies. Results are
taken from the original publication. Source code is
available at https://github.com/zqhang/
AnomalyCLIP.

4. Experiments

In this section, we provide more details regarding our
approach through ablation studies and the experiments
that were conducted. We also visualize the results and
discuss some insights and limitations of our approach.

4.1. Experiment Details
In this subsection, we detail the experimental setup.
We use the ViT-L-14-336 CLIP backbone from Open-
CLIP [7], pre-trained on the LAION-400M E32 setting
of open-clip. The learning rate is set to 0.001, with a
batch size of 8. The stage number m = 4. The features
are selected from layers 6, 12, 18, and 24.

We adopt a transfer learning setting, training the
model on one dataset and evaluating it on the remain-
ing. Specifically, we train our model on MVTec-AD
and evaluate it on VisA, MPDD, MAD, and Real-IAD,
as well as train on VisA and evaluate on MVTec-AD.
Other combinations are not included in the results, as
most baselines focus on the aforementioned configura-
tions. During training, we exclude all images labeled
with “combined” defects, which indicate multiple de-
fects in a single image. This exclusion is due to the
datasets providing binary anomaly masks that treat all
defects as identical. Since combined defects are rela-
tively rare in the datasets (see Tables 7, 8, 9), we opted
to leave them out during training. However, for testing,
all images with multiple defects are included to ensure a
fair comparison.

4.2. Ablation Studies
Here, we will give more details regarding our ablation
studies and show additional results of the experiments
we have conducted for the multi-type anomaly segmen-
tation (MTAS) task, binary zero-/few-shot anomaly de-
tection task, and zero-batch task.

4.2.1. Global Anomaly Score
To assess the impact of the global anomaly score on
anomaly detection, we conducted ablation studies using
our MultiADS model without the global anomaly score,
referred to as MultiADS-L. As shown in Table 14, re-
moving the global anomaly score leads to a noticeable
performance drop in the zero-shot setting. However,
the performance drop in the few-shot setting is mini-
mal, likely because the additional information provided
by the test data compensates for the absence of global
context.

4.2.2. Defect-Aware Text Prompts
To show the importance of the defect-aware text
prompts, we conduct experiments on the MPDD dataset
with our approach, MultiADS. First, we train our
model on the MVTec-AD dataset, with defect-aware text
prompts constructed for the MVTec-AD dataset. Then,
during the testing phase, instead of using the defect-
aware text prompts constructed for the MPDD dataset,
we use defect-aware text prompts constructed for the
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Table 14. Ablation study for testing without global anomaly score. MultiADS is our proposed method, while MultiADS-L is the
ablated version without including the global anomaly score.

Settings
Training → Testing Method

Image-Level
AUROC F1-max AP

Zero-shot
MVTec-AD → VisA

MultiADS 83.6 80.3 86.9
MultiADS-L 82.1 (+1.5) 80.3 (+0.0) 85.8 (+1.1)

MVTec-AD → MPDD
MultiADS 78.3 79.2 78.4

MultiADS-L 76.5 (+1.8) 79 (+0.2) 78.1 (+0.3)

Few-shot (k=4)
MVTec-AD → VisA

MultiADS 93.3 89.7 94.3
MultiADS-L 93.8 (-0.5) 89.6 (+0.1) 94.5 (-0.2)

MVTec-AD → MPDD
MultiADS 86 87.2 89.4

MultiADS-L 85.6 (+0.4) 86.8 (+0.4) 89.3 (+0.1)

Table 15. Ablation Study: Results for MultiADS for each product of the MPDD dataset with different defect-aware text prompts
from the VisA dataset and the MPDD dataset on few-shot (k=1) anomaly detection and segmentation tasks. Our model is trained
on the MVTec-AD dataset. (Bold represents the best performer)

Setting k=1
MVTec → MPDD Pixel-Level Image-Level

Product
AUROC F1-max AP AUPRO AUROC F1-max AP

VisA MPDD VisA MPDD VisA MPDD VisA MPDD VisA MPDD VisA MPDD VisA MPDD
Bracket black 96.7 97.2 11.2 18.7 4.5 11.8 88 89.5 63.4 74.6 78.5 81.6 68.6 80.8
Bracket brown 96 96.2 14.9 17.6 7.5 8.7 91 91.1 60.4 53.3 80 79.7 72.5 71.4
Bracket white 99.7 99.7 20.7 24.5 12.8 15.2 96.5 96.7 73.4 81.1 75 78.3 77 82.5

Connector 95.9 96.4 35.3 33.9 33.7 32.4 87.2 87.8 92.9 91.4 78.8 82.8 88.9 9.3
Metal plate 96.3 96.3 74.6 73.1 81.2 74.8 90.6 89.8 99 92 97.9 90.1 99.6 97.2

Tubes 98.7 98.8 69 68.7 71 70.4 95 95.5 97.3 97.6 96.4 95.5 99 99.1
Average 97.2 97.4 37.6 39.4 35.1 35.6 91.4 91.7 81.1 81.7 84.4 84.6 84.3 86.7

VisA dataset. The results are shown in Table 15. We
observe that our approach, MultiADS, performs quite
well even when we utilize the defect-aware text prompts
of the other dataset for all the metrics on pixel-level and
image-level on few-shot anomaly detection and segmen-
tation tasks. Also, we note that to achieve the best per-
formance, especially on the image level, it is crucial to
employ defect-aware text prompts suitable for the prod-
ucts of the testing dataset, the MPDD dataset.

In addition to the results shown in the main
manuscript, in Table 16 we list the segmentation perfor-
mance for some sample defect types that are seen/unseen
during the training phase. We notice that defects such
as stains and scratches are easy to locate and classify,
as they also occur on the training dataset - MVTec-AD.
For unseen defects like burrs and mismatch, our model
achieves slightly lower accuracy. On the other hand, for
other unseen defects such as flattening, we perform with
high precision for the classification task. These results,
similar to results in the main manuscript, reflect that our
approach, MultiADS, has generalization ability on large
and complex datasets and unseen defects in the training
dataset.

Table 16. Results MTAS for zero-shot setting at pixel-level for
sample defect-types. The model is trained on the MVTec-AD
dataset. - indicates unseen defect types while ✓indicates seen
defect types during training.

(a) MAD-sim

Defects AUROC F1-Score AP
- Burrs 95.56 1.18 1.67
✓ Missing 86.52 2.56 3.08
✓ Stains 98.19 15.02 9.92

(b) MPDD

Defects AUROC F1-Score AP
- Mismatch 88.44 2.56 1.04
- Flattening 96.72 36.06 8.33
✓ Scratch 96.67 26.99 20.26

4.2.3. Batched Zero-shot Setting
The idea behind the batched zero-shot setting is to utilize
all text samples in Xtest without relying on any labels.
This approach can be viewed as a form of domain adap-
tation, enabling the trained model to better align with the
target domain. Inspired by the methodology proposed
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Table 17. Image level results for batched zero-shot setting. All
results are AUROC values (%). The numbers of baselines are
taken from AnomalyDINO [3]. 448 and 672 are the resolutions
of the input image.

Setting Method MVTec VisA

Batched
zero-shot

ACR [10] 85.8 /
MuSc [11] 97.8 92.8
AnomalyDINO(448) [3] 93.0 89.7
AnomalyDINO(672) [3] 94.2 90.7
MultiADS (ours) 96.1 93.1

by AnomalyDINO [3], we employ a memory bank to
facilitate this adaptation process. For each test sample
x(k) ∈ Xtest, let Zk

i ∈ Rh×w×Nz denote the adapted im-
age patch embeddings at state i for given image x(k). We
define memory bank Mi as the union of all image patch
embeddings at stage i across the entire text set Xtest:

Mi =
⋃

x(k)∈Xtest

{
Zk

i [a, b]|a ∈ [h], b ∈ [w]
}

. (3)

During testing, for each given image x(k), we compute
the cosine similarity between its adapted image patch
embedding Zk

i [a, b] ∈ RNz and all embeddings in the
memory bank Mi \ Zk

i [a, b]. Since the memory bank
may include anomalous features (due to the unlabeled
setting), directly selecting the nearest neighbor might
not reliably represent nominal behavior. To address this,
and based on the assumption that most patches in the
memory bank are nominal, we replace the nearest neigh-
bor with the k-th nearest neighbor, where k corresponds
to the α-quantile of the similarity scores. Thus, the set
of cosine similarity scores is defined as follows:

D
(
Zk

i [a, b], Mi \ {Zk
i [a, b]}

)
=

{
d
(
Zk

i [a, b],x
)
|

x ∈ Mi \ {Zk
i [a, b]}

}
.

(4)

where d(·) represents the cosine similarity. The refer-
ence anomaly score for image patch embedding Zk

i [a, b]
is defined as follows:

s(Zk
i [a, b]) = qα(D(Zk

i [a, b],Mi \ Zk
i [a, b])), (5)

where qα is the α quantile of the similarity score set.
The comparison of our MultiADS approach with other
baselines is listed in Table 17.

4.2.4. Backbones
In Table 18, we show the impact of different architec-
tures and resolutions for our proposed approach, Mul-
tiADS. To evaluate the performance of our proposed

approach, MultiADS, and other baselines, we perform
zero-shot and few-shot anomaly detection and segmen-
tation on five datasets, MVTec-AD [1], VisA [22],
MPDD [9], MAD [19], and Real-IAD [15]. Results of
other baselines are taken from the original published pa-
pers or the most recent publications. Thus, for some of
the baselines, we are missing the evaluation with differ-
ent metrics, such as F1-max, AP, and AUPRO on pixel-
level, or F1-max and AP for image-level.

4.2.5. Additional Results
In Tables 19, 20, and 21, we show results for our ap-
proach, MultiADS, and other baselines on a few-shot
setting with k ∈ [1, 2, 4, 8] on anomaly detection and
segmentation tasks on three datasets, VisA, MPDD, and
MVTec-AD, respectively. In Tables 22, 23, and 24, we
show results for our approach, MultiADS, on a few-shot
setting with k ∈ {1, 2} on anomaly detection and seg-
mentation tasks for each product of the VisA, MPDD,
and MVTec-AD datasets, respectively. In Tables 25 and
26, we show results for the variant of our approach,
MultiADS-F, on the few-shot setting with k ∈ {1, 2}
on anomaly detection and segmentation tasks for each
product of the VisA and MPDD datasets, respectively.

Furthermore, in Table 27, we show results for our
proposal, MultiADS, and the most recent baseline, Ada-
CLIP, for all products of the Real-IAD dataset. We note
that our proposal outperforms AdaCLIP for all metrics,
and the largest improvement of our method is at the im-
age level. Similarly, in Table 28, we show results for our
proposal, MultiADS, and the most competitive baseline,
April-GAN, for all products of the MAD dataset. We
note that our proposal overall outperforms April-GAN
for almost all metrics, and the largest improvement of
our method is at the pixel level.

4.3. Visualizations
In this subsection, we present additional visualizations
of our anomaly segmentation results. We include eight
examples of products from the MVTec-AD, VisA, and
MPDD datasets: hazelnut (Figure 1), screw (Figure 2),
and leather (Figure 3) from MVTec-AD; pipe fryum
(Figure 4), and capsule (Figure 5) from VisA; and con-
nector (Figure 6) and tube (Figure 7) from MPDD. All
segmentation visualizations are performed in a few-shot
(k = 4) setting. Specifically, the models for hazelnut,
screw, and leather were trained on the VisA dataset; the
models for pipe fryum, capsule, and candle were trained
on the MVTec-AD dataset; and the models for connec-
tor and tube were trained on the MVTec-AD dataset. We
discuss some insights and limitations in the caption of
these figures.
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Table 18. Ablation study for training and testing with different architectures/resolutions for BADS. MultiADS applies the ViT-L-14
architecture with a resolution of 336.

Settings
Dataset Architecture Resolution

Image-Level
AUROC F1-max AP

Zero-shot

VisA

ViT-B-16 224 74 76.6 79
ViT-B-32 224 68.4 74.6 73.5
ViT-L-14 224 75.2 78.4 80.6
ViT-L-14 336 83.6 80.3 86.9

MPDD

ViT-B-16 224 67.7 77.2 74.4
ViT-B-32 224 60.7 75 68.8
ViT-L-14 224 71.6 77.8 76.8
ViT-L-14 336 78.3 79.2 78.4

Few-shot (k=4)

VisA

ViT-B-16 224 90 86 91.9
ViT-B-32 224 83.1 81.4 85.4
ViT-L-14 224 92 88 93.5
ViT-L-14 336 93.3 89.7 94.3

MPDD

ViT-B-16 224 80.2 81.6 80
ViT-B-32 224 78.2 83.1 80.2
ViT-L-14 224 82 82.9 84.3
ViT-L-14 336 85.6 87.2 89.4

Table 19. Few-shot anomaly detection and segmentation on the VisA Datasets. April-GAN baseline and our model are trained
on the MVTec-AD dataset. (- denotes the results for this metric are not reported in the original paper; bold represents the best
performer)

Settings k=1 k=2
VisA Pixel-Level Image-Level Pixel-Level Image-Level

Method Venue AUROC AUPRO AUROC F1-max AP AUROC AUPRO AUROC F1-max AP
PaDiM ICPR21 89.9 64.3 62.8 75.3 68.3 92.0 70.1 67.4 75.7 71.6
CoOp IJCV22 - - - - - - - 83.5 - -

PatchCore CVPR23 95.4 80.5 79.9 81.7 82.8 96.1 82.6 81.6 82.5 84.8
WinCLIP CVPR23 96.4 85.1 83.8 83.1 85.1 96.8 86.2 84.6 83.0 85.8

April-GAN CVPR23 96.0 90.0 91.2 86.9 93.3 96.2 90.1 92.2 87.7 94.2
PromptAD CVPR24 96.7 - 86.9 - - 97.1 - 88.3 - -
InCTRL CVPR24 - - - - - - - 87.7 - -

AnomalyGPT AAAI24 96.2 - 87.4 - - 96.4 - 88.6 - -
MultiADS (ours) 97.1 92.7 91.9 88.3 93.1 97.2 93.1 93.3 89.5 93.9

MultiADS-F (ours) 96.6 91.7 92 88.1 93.9 96.7 91.9 92.8 88.5 94.4
Settings k=4 k=8

VisA Pixel-Level Image-Level Pixel-Level Image-Level
Method Venue AUROC AUPRO AUROC F1-max AP AUROC AUPRO AUROC F1-max AP
PaDiM ICPR21 93.2 72.6 72.8 78.0 75.6 - - 78.1 - -
CoOp IJCV22 - - 84.2* - - - - 84.8 - -

PatchCore CVPR23 96.8 84.9 85.3 84.3 87.5 - - 87.3 - -
WinCLIP CVPR23 97.2 87.6 87.3 84.2 88.8 - - 88.0 - -

April-GAN CVPR23 96.2 90.2 92.6 88.4 94.5 96.3 90.2 92.7 88.5 94.6
PromptAD CVPR24 97.4 - 89.1 - - - - - - -
InCTRL CVPR24 - - 90.2* - - - - 90.4 - -

AnomalyGPT AAAI24 96.7 - 90.6 - - - - - - -
MultiADS (ours) 96.9 91.1 93.3 89.7 94.3 97.4 93.5 94.7 91.3 94.9

MultiADS-F (ours) 97.0 91.5 92.8 88.5 94.6 96.9 92.1 93.8 89.5 95.1
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Table 20. Few-shot anomaly detection and segmentation on the MPDD Dataset. April-GAN baseline and our model are trained
on the MVTec-AD dataset. (- denotes the results for this metric are not reported in the original paper; bold represents the best
performer)

Settings k=1 k=2
MPDD Pixel-Level Image-Level Pixel-Level Image-Level

Method Venue AUROC AUPRO AUROC F1-max AP AUROC AUPRO AUROC F1-max AP
PaDiM ICPR21 73.9 - 57.5 - - 75.4 - 58.0 - -
RegAD ECCV22 92.6 - 60.9 - - 93.2 - 63.4 - -

PatchCore CVPR22 79.4 - 68.9 77.2 - 84.4 - 75.5 81.7 -
April-GAN CVPR23 96.9 91.4 84.6 86.8 88.6 96.9 91.4 84.6 86.8 88.6
GraphCore ICLR23 95.2 - 84.7 - - 95.4 - 85.4 - -
FastRecon ICCV23 96.4 - 72.2 79.1 - 96.7 - 76.1 82.8 -

MultiADS (ours) 97.4 91.7 81.7 84.6 86.7 97.7 92.4 86.6 86.6 90.1
MultiADS-F (ours) 97.7 92.2 80.1 82.5 84 97.8 92.4 83.8 85.8 86.9

Settings k=4 k=8
MPDD Pixel-Level Image-Level Pixel-Level Image-Level

Method Venue AUROC AUPRO AUROC F1-max AP AUROC AUPRO AUROC F1-max AP
PaDiM ICPR21 75.9 - 58.3 - - 76.2 - 58.5 - -
RegAD ECCV22 93.9 - 68.8 - - 95.1 - 71.9 - -

PatchCore CVPR22 92.8 - 77.8 82.4 - 92.8 - 77.8 82.4 -
April-GAN CVPR23 96.9 91.4 84.6 86.8 88.6 96.7 91 86 87.8 90.8
GraphCore ICLR23 95.7 - 85.7 - - 95.9 - 86.0 - -
FastRecon ICCV23 97.2 - 79.3 83.5 - 97.2 - 79.3 83.5 -

MultiADS (ours) 97.5 94.1 84.3 84.8 87.2 97.7 93.1 83.3 87.6 88.1
MultiADS-F (ours) 97.8 94.4 86.2 88.5 88.8 98 92.8 85 85.2 89.1

Table 21. Few-shot anomaly detection and segmentation on the MVTec-AD Dataset. April-GAN baseline and our model are trained
on the VisA dataset. (- denotes the results for this metric are not reported in the original paper; bold represents the best performer)

Settings k=1 k=2
MVTec-AD Pixel-Level Image-Level Pixel-Level Image-Level

Method Venue AUROC AUPRO AUROC F1-max AP AUROC AUPRO AUROC F1-max AP
PaDiM ICPR21 89.9 64.3 62.8 75.3 68.3 92.0 70.1 67.4 75.7 71.6

PatchCore CVPR23 95.4 80.5 79.9 81.7 82.8 96.1 82.6 81.6 82.5 84.8
WinCLIP CVPR23 96.4 85.1 83.8 83.1 85.1 96.8 86.2 84.6 83.0 85.8

April-GAN CVPR23 96.0 90.0 91.2 86.9 93.3 96.2 90.1 92.2 87.7 94.2
PromptAD CVPR24 96.7 - 86.9 - - 97.1 - 88.3 - -

AnomalyGPT AAAI24 96.2 - 87.4 - - 96.4 - 88.6 - -
MultiADS (ours) 93.2 90.6 93 94 96.4 93.2 90.8 93.5 94.5 96.6

Settings k=4 k=8
MVTec-AD Pixel-Level Image-Level Pixel-Level Image-Level

Method Venue AUROC AUPRO AUROC F1-max AP AUROC AUPRO AUROC F1-max AP
PaDiM ICPR21 93.2 72.6 72.8 78.0 75.6 - - - - -

PatchCore CVPR23 96.8 84.9 85.3 84.3 87.5 - - - - -
WinCLIP CVPR23 97.2 87.6 87.3 84.2 88.8 - - - - -

April-GAN CVPR23 95.9 91.8 92.8 92.8 96.3 96.1 92.2 93.3 93.1 96.5
PromptAD CVPR24 97.4 - 89.1 - - - - - - -

AnomalyGPT AAAI24 96.7 - 90.6 - - - - - - -
MultiADS (ours) 93.3 90.9 96.6 95.4 98.1 93.4 91.2 97.2 96 98.5
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Table 22. Results for MultiADS for each product of the VisA dataset on few-shot anomaly detection and segmentation tasks. Our
model is trained on the MVTec-AD dataset.

Settings k=1 k=2
VisA Pixel-Level Image-Level Pixel-Level Image-Level

Product AUROC F1-max AP AUPRO AUROC F1-max AP AUROC F1-max AP AUPRO AUROC F1-max AP
Candle 98.7 39.7 25.2 97 91.2 88.1 90.8 98.7 39.3 24.7 97.1 92 88.8 91

Capsules 98.1 47.1 39.9 90.7 95.4 92.1 97.6 98.3 48.8 44.2 92.9 96.5 92.5 98.1
Cashew 94.6 49.3 41.8 96.3 91 89.7 95.5 94.3 49.5 41.4 96.5 95 92.2 97.6

Chewinggum 99.7 72.4 76.1 95.1 98.4 97 99.4 99.6 71.1 73.6 94.7 98.4 96.4 99.3
Fryum 95 35.4 29.8 93 96.6 92.9 98.3 95.1 36.7 30.7 93.3 97.3 95.9 98.9

Macaroni1 99.5 33.6 26.2 95.6 90.8 84 92.9 99.5 30.1 22.8 96.1 90.6 83.7 92.3
Macaroni2 98.7 26.8 14.1 90.4 85.8 80.2 89.2 98.8 23.8 12.5 89.6 83 75.6 85.6

Pcb1 96.6 36.1 29.9 93.2 94.9 90.6 94.1 97 42.5 36.2 93.5 93.5 88.6 92.3
Pcb2 95.4 27.4 19.1 84.7 77.4 72.7 78.5 95.6 35.9 24.9 86.3 87.5 82.7 87.4
Pcb3 93.8 42.9 32.4 86.5 86.4 81.3 87.4 94.1 50.1 39.8 87.3 90.9 84 91.2
Pcb4 96.6 38.3 34 91.9 96.4 93.8 94.5 96.7 39.6 34.3 92.1 96.1 93.7 93.3

Pipe fryum 98.1 50.1 40.8 97.8 98.9 97.5 99.3 98.1 51.1 41 97.9 99 99.5 99.3
Average 97.1 41.6 34.1 92.7 91.9 88.3 93.1 97.2 43.2 35.5 93.1 93.3 89.5 93.9

Table 23. Results for MultiADS for each product of the MPDD dataset on few-shot anomaly detection and segmentation tasks. Our
model is trained on the MVTec-AD dataset.

Settings k=1 k=2
MPDD Pixel-Level Image-Level Pixel-Level Image-Level
Product AUROC F1-max AP AUPRO AUROC F1-max AP AUROC F1-max AP AUPRO AUROC F1-max AP

Bracket black 97.2 18.7 11.8 89.5 74.6 81.6 80.8 98.3 35 25.3 94.3 82.4 82.1 88.9
Bracket brown 96.2 17.6 8.7 91.1 53.3 79.7 71.4 96.2 19.9 11.1 90.1 65.8 81 78.1
Bracket white 99.7 24.5 15.2 96.7 81.1 78.3 82.5 99.6 23.7 14.1 96.2 84.1 81.1 85

Connector 96.4 33.9 32.4 87.8 91.4 82.8 89.3 96.2 35.1 34.3 87.7 93.8 85.7 91
Metal plate 96.3 73.1 74.8 89.8 92 90.1 97.2 96.8 75 77.8 90.7 95.7 93.7 98.5

Tubes 98.8 68.7 70.4 95.5 97.6 95.5 99.1 98.8 69.2 71.2 95.7 97.9 96.3 99.2
Average 97.4 39.4 35.6 91.7 81.7 84.6 86.7 97.7 43 39 92.4 86.6 86.6 90.1

Table 24. Results for MultiADS for each product of the MVTec-AD dataset on few-shot anomaly detection and segmentation tasks.
Our model is trained on the VisA dataset.

Settings k=1 k=2
MVTec-AD Pixel-Level Image-Level Pixel-Level Image-Level

Product AUROC F1-max AP AUPRO AUROC F1-max AP AUROC F1-max AP AUPRO AUROC F1-max AP
Bottle 93.3 63.2 66.9 89.3 97.2 96.7 99.2 93.4 63.6 67.3 89.3 96.9 96.7 99.1
Cable 84.8 37.3 34.1 81 82.7 80.8 90.3 83.8 39.8 35.1 80.6 84.6 82.2 91

Capsule 95.3 36.6 31.1 93.6 73.6 93.4 91.6 95.4 36.7 30.6 94 72.9 93 91.4
Carpet 99.1 73.1 78 97.3 99.7 98.3 99.9 99.1 72.9 77.6 97.6 99.8 98.9 99.9
Grid 98.3 45.3 40.7 94.5 95.8 96.5 98.1 98.6 45.6 42.6 95.1 97.7 97.4 98.9

Hazelnut 98 61 63.9 96 99.8 99.3 99.9 98.2 63.1 66.4 96.2 98.9 97.9 99.3
Leather 99.6 59.3 60.8 99.2 98.9 99.5 99.6 99.6 59.1 61 99.2 100 100 100

Metal nut 83.8 40.9 43.6 85.5 97.1 96.8 99.3 83.8 41.5 45 85.8 99.7 98.4 99.9
Pill 88.8 40.4 38.6 96.3 96.4 96.9 99.2 88.6 40.3 38.2 96.3 95.5 97.2 99

Screw 98 34.7 28.6 93.3 78.8 87.5 91.2 98 35.5 31.1 93.3 76.9 86.5 91.3
Tile 95.2 69.6 64 91.7 98 96.4 99.2 95.2 69.6 64.1 91.4 98.4 97 99.3

Toothbrush 98.1 59.2 56 95.6 99.7 98.4 99.9 98 58.7 56.4 95.5 99.7 98.4 99.9
Transistor 71.4 25 22.9 59.1 82.8 75.4 80.1 72.4 27.1 24.5 59.8 85 78.6 81.2

Wood 96.4 67.9 68.8 95.7 99.1 97.4 99.7 96.5 68.1 69.3 95.8 99.3 97.5 99.8
Zipper 97.2 63.8 63.1 91.2 95.9 96.3 98.8 97.3 64.8 64 91.4 97.4 97.1 99.3

Average 93.2 51.8 50.7 90.6 93 94 96.4 93.2 52.4 51.5 90.8 93.5 94.5 96.6
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Table 25. Results for MultiADS-F for each product of the VisA dataset on few-shot anomaly detection and segmentation tasks. Our
model is trained on the MVTec-AD dataset.

Settings k=1 k=2
VisA Pixel-Level Image-Level Pixel-Level Image-Level

Product AUROC F1-max AP AUPRO AUROC F1-max AP AUROC F1-max AP AUPRO AUROC F1-max AP
Candle 98.7 40.4 27.1 97.1 90.4 84.4 91 98.7 40 26.7 97 90.6 85.7 91.1

Capsules 97.6 47.2 40.6 88.1 93.1 91.1 96.6 97.7 48.2 42.3 89.6 93.8 89.7 96.8
Cashew 94.1 39.4 32.1 96.6 91.7 89.2 95.7 93.9 39.9 31.6 96.6 94.3 91.3 97.3

Chewinggum 99.6 77.6 82.2 93.1 98.9 97.4 99.5 99.6 77.4 81.9 93.1 98.3 97.4 99.3
Fryum 94.3 33.3 27 92 93.8 93.3 97.4 94.4 34.1 27.5 92.3 94.7 93.8 98

Macaroni1 99.5 35.7 26 96.2 89.1 82.4 91.7 99.5 35 24.5 96.4 90.3 82.4 92.5
Macaroni2 98.8 26.8 14.3 89.8 84.3 77.9 88.7 98.8 25.5 13.7 89.3 82.8 77.2 86.3

Pcb1 95.2 23.2 17.3 92 95.8 89.3 96.2 95.7 25 19.1 92.3 94.9 87.1 95.4
Pcb2 94.4 31 21.6 82.3 83.7 78.8 85.7 94.5 35 24.4 83.3 87.9 80.4 90.2
Pcb3 93.5 39.9 29.9 83.6 86.1 80.4 88 93.7 46.1 35.5 84 89.6 83 90.5
Pcb4 96.5 39.7 35.1 91.6 97.5 94.1 96.7 96.5 40.5 35.4 91.6 97.4 94.2 96.5

Pipe fryum 97.4 43.4 34.3 97.7 99.1 99 99.4 97.4 43 33.9 97.6 99 99.5 99.3
Average 96.6 39.8 32.3 91.7 92 88.1 93.9 96.7 40.8 33 91.9 92.8 88.5 94.4

Table 26. Results for MultiADS-F for each product of the MPDD dataset on few-shot anomaly detection and segmentation tasks.
Our model is trained on the MVTec-AD dataset.

Settings k=1 k=2
MPDD Pixel-Level Image-Level Pixel-Level Image-Level
Product AUROC F1-max AP AUPRO AUROC F1-max AP AUROC F1-max AP AUPRO AUROC F1-max AP

Bracket black 97.6 25 18.2 91.8 73.1 77.1 82.8 98.1 32.1 23.7 94.1 78.6 81.1 86.2
Bracket brown 95.9 18.5 9.8 88.9 54.6 79.7 74.4 95.9 21.1 13.4 87.9 65.4 81 80.6
Bracket white 99.6 22.2 14.1 95.8 74.6 78.9 69.8 99.6 22.4 12.8 95.4 75.4 81.1 70.4

Connector 96.3 30.8 27.3 87.3 84.8 70.6 79.8 96 31.8 28.6 86.9 89 82.8 86.7
Metal plate 97.6 80.4 78.3 93.2 98.4 97.3 99.4 98.1 82.5 81.4 94.2 98.9 97.3 99.6

Tubes 99 65.6 68.9 96 95.4 91.5 98.1 99 66.2 69.5 96.2 95.3 91.4 98
Average 97.7 40.4 36.1 92.2 80.1 82.5 84 97.8 42.7 38.2 92.4 83.8 85.8 86.9
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Table 27. Results for MultiADS and the most recent baseline approach, AdaCLIP, for each product of the Real-IAD dataset on
few-shot (k=4) anomaly detection and segmentation tasks. Both models are trained on the MVTec-AD dataset.

Baseline MultiADS AdaCLIP
Real-IAD Pixel-Level Image-Level Pixel-Level Image-Level
Product AUROC F1-max AP AUPRO AUROC F1-max AP AUROC F1-max AP AUPRO AUROC F1-max AP

Audiojack 98.4 54.6 49.9 89.3 75.8 72.8 77.8 97.21 42.47 37.46 - 66.2 53.68 57.39
Bottle Cap 99 41.5 34.9 92 81 71.5 81.3 98.4 34.8 30.06 - 86.84 76.87 80.65

Button Battery 97.5 47.7 46.7 89.3 72.9 75.4 82 96.69 45.7 45.98 - 69.47 74.45 78.94
End Cap 96 30.6 21.7 86.8 77.3 76.8 84.4 90.59 17.74 7.89 - 60.45 74.85 67.59
Eraser 99.8 62.2 63.8 98.6 92.2 86.2 92.5 99.09 59.5 59.52 - 71.49 60.43 67.37

Fire hood 99.5 57.2 58.6 97.8 94.1 81.5 87.5 99.36 51.82 54 - 87.76 72.36 73.05
Mint 97.2 44 36.5 76 67.9 74.7 79.1 94.16 41.09 34.41 - 64.47 74.69 75.19

Mounts 99.8 60.7 58.6 99.3 91.3 87 78.6 99.68 58.08 58.96 - 85.31 75.75 77.96
Pcb 97.5 43.1 37.5 89.2 81.7 79.6 89.5 96.13 29.74 24.58 - 77.41 78.7 85.46

Phone Battery 99.4 61.8 61.2 95.3 90.5 85.6 92.7 97.51 58.98 57.42 - 61.29 63.37 65.15
Plastic Nut 98.8 37 37.1 93.5 85.9 60.1 65.7 97.1 37.57 38.56 - 81.14 53.85 58.51
Plastic Plug 99.1 47.8 40.4 96.3 79.5 70.2 80.7 95.23 46.29 39.14 - 73.36 64.37 70.65

Porcelain Doll 99.8 45.8 45.4 99 95.2 86.2 92.7 91.65 42.4 34.37 - 63.37 52.36 50.13
Regulator 96.6 38.7 29.7 78.4 78.1 51.1 55.4 88.1 3.34 1.91 - 42.27 21.92 11.48

Rolled Strip Base 99.7 68.2 63.4 99 99 97.5 99.5 98.83 48.42 44.04 - 65.33 80.32 80.01
Sim Card Set 99.8 68.7 72.6 98.4 97.3 94 97.8 99.72 66.37 71.28 - 83.06 79.91 86.61

Switch 92.8 24.5 19.2 86.3 80.3 81.6 89 83.55 21.81 15.82 - 82.29 82.49 89.5
Tape 99.8 58.8 57.5 99.4 98.4 92.8 97.9 98.6 48.59 46.93 - 96.95 89.64 95.18

Terminalblock 99 65.2 60.7 96.7 92.8 89.9 95.9 98.53 52.16 50.18 - 61.13 71.85 68.61
Toothbrush 98 47.1 40.4 93.7 87.3 84.3 92.8 98.48 45.37 43.02 - 61.84 78.65 69.81

Toy 84.2 26 17.8 75.8 80.3 83.3 89.9 80.32 19.47 12.37 - 47.04 80.13 68.09
Toy Brick 98.9 56.5 56.9 91.2 85.9 75.6 85.2 97.73 32.03 25.41 - 54.69 59.04 43.9
Transistor 94.7 37 27.2 80.2 79.4 80.3 88.6 86.28 21.05 12.47 - 59.39 77.97 72.56
U Block 99.2 53.8 50.2 95.8 87.7 77.3 83.3 95.71 32.23 22.41 - 78.29 69.38 75.75

Usb 99.1 47.5 41.4 96.7 83.1 73.9 82.6 96.67 49.59 45.06 - 54.48 39.1 39.55
Usb Adaptor 98.8 37.8 28.4 92.5 86.9 77.5 84.3 97.63 42.81 33.58 - 80.96 74.29 80.75

Vcpill 98.3 67 65.4 88.5 84.3 74.8 82 95.45 43.35 40.93 - 52.28 51.11 43.74
Wooden Beads 98.4 47.6 44.2 89.6 79.5 75.4 86.2 95.39 19.8 13.34 - 69.82 72.57 77.64

Woodstick 99.1 63.7 66.7 96.7 92 72.7 78.9 99.57 58.02 59.74 - 78.77 54 51.17
Zipper 98 40.7 36.9 96.1 97.9 96.6 98.8 98.51 44.78 41.15 - 88.31 86.38 94.81

Average 97.9 49.4 45.7 91.9 85.8 79.5 85.8 95.39 40.51 36.73 - 70.18 68.15 68.57

Table 28. Results for MultiADS and the most competitive baseline approach, April-GAN, for each product of the MAD dataset on
few-shot (k=4) anomaly detection and segmentation tasks. Both models are trained on the MVTec-AD dataset.

Baseline MultiADS April-GAN
MAD Pixel-Level Image-Level Pixel-Level Image-Level

Product AUROC F1-max AP AUPRO AUROC F1-max AP AUROC F1-max AP AUPRO AUROC F1-max AP
Bear 91.8 16.9 11.9 82.9 71.9 93.7 94.6 91.2 13.1 8.5 79.8 64.1 93.5 92.5
Bird 91.5 9.3 4.9 76.6 64.8 94.4 92.6 90.8 7.9 4.6 74.4 66.3 94.4 93.8
Cat 94.4 8.7 4.9 86.4 57 94.5 92.3 94.1 9.2 5.6 84.5 58.4 94.5 92.6

Elephant 72.5 6.7 3.8 67.4 72.9 93.9 95.8 71.5 6.7 3.7 65.7 64.6 93.9 94
Gorilla 93.3 11.8 5.9 82.2 52.1 96.2 92.7 92.3 10.1 5.7 77.3 55.4 96.2 93.9
Mallard 86.9 14.4 6.7 67.2 62 95.6 95 86.3 15.4 8 64.6 55.7 95.6 93.8

Obesobeso 95.1 20.7 13.2 89.5 58.7 94.5 90.8 94.2 17.2 11.6 86.5 64.2 94.1 93.7
Owl 92.8 15.9 9.6 81.4 72.6 93.2 94.2 92.4 12.5 7.5 79.7 67 93 93.4

Parrot 85.7 9.2 5.1 66 66.5 92 91.7 85.2 7.2 4.4 68.5 59 91.8 89.8
Pheonix 85.7 4.4 2 73.9 52.6 94.4 90.3 85.4 4.8 2.3 73.2 53.8 94.4 90.6

Pig 95.5 13.9 10.2 86.5 61 94 93.2 95.3 14 9.5 85 62.9 94 93.9
Puppy 88.2 12.8 7.7 75.2 68.7 92.9 94.1 87.5 9.8 6.9 72.6 63.4 92.9 92.6

Sabertooth 91.7 6.4 4.7 77.6 63.8 93.2 92.9 91 5.9 4.2 74.9 60.6 93.1 91.9
Scorpion 90.7 8.7 6.2 82.7 62.1 92.9 91.8 91 8.8 6.8 81.7 65.2 92.9 93.3

Sheep 94.2 12.5 9 85.4 63.5 93.3 93.1 94.2 12.1 8.8 84.6 60.5 93.3 92.7
Swan 91 10.6 4.3 77.4 51 93.3 89.1 90.7 8.5 3.9 76.4 57.3 93.3 90.4
Turtle 91.5 12.6 7.7 77 59.6 95.2 93.7 90.9 15.4 9.4 74.2 62.6 95.2 95

Unicorn 87.6 5.1 4.1 74.3 54.6 95.7 94 87.3 5.3 4 71.3 60 95.7 95
Whale 89.5 13.3 7.4 82 58.1 94.4 92.8 89.3 16.1 9.2 80.7 67.5 94.7 94.7
Zalika 86.6 6.6 4.9 68.9 68 93.5 93.8 86 6 4.6 65.9 65.8 93.1 93.5

Average 89.8 11 6.7 78 62.1 94 92.9 89.3 10.3 6.5 76.1 61.7 94 93.1
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1 2 3 4 5 6 7 8 9

Figure 1. This visualization showcases the hazelnut product from the MVTec AD dataset (trained on the VisA dataset). The first
row displays the input images, the second row presents the ground truth masks of anomalies, and the third row shows the predicted
anomaly maps generated by the model. The model is trained on the VisA dataset and evaluated on the MVTec AD dataset using a
few-shot setting with k = 4. As shown in the figure, our approach effectively distinguishes defect types such as scratches (Columns
1, 2) and holes (Columns 3, 4). However, for large cracks (Columns 6, 7), the method tends to focus on the edges while marking
the interior as normal. This behavior is likely due to the patch-level features being more localized and lacking global context.

1 2 3 4 5 6 7 8 9

Figure 2. This visualization showcases the screw product from the MVTec AD dataset (trained on the VisA dataset). Our model
successfully detects defects such as scratches (Columns 1-3, 7-9) and bends (Columns 4-6) in the front part. Our model also
allocates some attention to the screw body.

1 2 3 4 5 6 7 8 9

Figure 3. This visualization showcases the leather product from the MVTec AD dataset. Our approach can easily identify the
defect of cut (Columns 1-3), fold (Columns 4-6), and poke (Columns 7-9).
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Figure 4. This visualization showcases the pipe fryum product from the VisA dataset (trained on the MVTec-AD dataset). Our
model can identify the defects like color spots (Columns 1-3), broken (Columns 4-5), and scratches (Columns 6-9).

1 2 3 4 5 6 7 8 9

Figure 5. This visualization showcases the capsule product from the VisA dataset (trained on the MVTec-AD dataset). Our model
effectively identifies defects such as leakage (Columns 1–5), misshapes (Columns 6–7), and scratches (Column 8) with clear
accuracy. However, it tends to overlook bubble defect (Columns 1 and 9), and product highlights are occasionally misclassified as
defects (Column 9).

1 2 3 4 5 6 7 8 9

Figure 6. This visualization showcases the connector product from the MPDD dataset (trained on the MVTec-AD dataset). Our
model effectively identifies part-missing defects. However, wrinkles in the green background can sometimes mislead the model,
causing them to be misclassified as anomalies.
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Figure 7. This visualization showcases the tube product from the MPDD dataset (trained on the MVTec-AD dataset). Our model
successfully identifies flattened tubes but also introduces some noise, such as misclassifying the edges of the tubes as anomalies.

1 2 3 4 5 6 7 8 9

Figure 8. This visualization showcases the phone battery product from the Real-IAD dataset (trained on the MVTec-AD dataset).
Our model successfully identifies defects like contamination, scratch, and damage.

1 2 3 4 5 6 7 8 9

Figure 9. This visualization showcases the sim card set product from the Real-IAD dataset (trained on the MVTec-AD dataset).
Our model successfully identifies defects like scratch and damage
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