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1. Analytical and Differentiable Coordinate
Transformations

Notation: Lowercase bold letters denote column vectors,
while uppercase bold letters are used for matrices. Coordi-
nates in D dimensions are represented as column vectors,
i.e., x ∈ RD. The symbol x̃ denotes x in homogeneous
coordinates, expressed as x̃ = [x, 1]T . Superscripts like
x(j) are used to indicate distinct instances of x (such as in a
dataset), while subscripts, xj , represent the j-th component
of x.

We introduce families of parametric transformations that
can be derived explicitly in closed-form based on corre-
sponding landmark pairs. Let us consider N matching land-
mark pairs {(x(j),y(j))}Nj=1, where x(j),y(j) ∈ RD and
N > D. For simplicity, we define X := ⟨x(1) . . .x(N)⟩ ∈
RD×N , and similarly for X̃ and Y. We define a transfor-
mation function Tβ : RD → RD, where β ∈ B are the
transformation parameters.

1.1. Thin-Plate Spline Deformation Model

The thin-plate spline (TPS) transformation is used for coor-
dinate mapping, delivering a non-rigid, parameterized de-
formation model with a closed-form solution for interpolat-
ing corresponding landmarks [8, 14, 45, 73]. This approach
offers greater adaptability than affine mappings while in-
herently encompassing affine transformations as a specific
case.

The TPS deformation model Tβ : RD → RD is ex-
pressed as:

Tβ(x) = WT x̃+

N∑
j=1

vjΦ(∥x(j) − x∥2), (S1)

where W ∈ RD×(D+1) and vj ∈ RD represent the trans-
formation parameters (β), and Φ(r) = r2 ln(r). Addi-
tionally, V = {vj}Nj=1, making the full parameter set
β = {W,V}.
The transformation T minimizes the bending energy:

IT =

∫
RD

∥∇2T (x)∥2F dx, (S2)

which ensures that T is smooth with square-integrable sec-
ond derivatives. We impose the interpolation conditions
T (x(j)) = y(j) for j = 1, . . . , N , and the following con-

straints to ensure a well-posed solution:

N∑
j=1

vj = 0 and
N∑
j=1

vj(x
(j))T = 0. (S3)

Based on the mentioned conditions, the linear system below
can be considered for β:[

M R
RT Z

] [
V
W

]
=

[
Y
Z

]
, (S4)

where M ∈ RN×N with entries Mij = Φ(∥x(i) − x(j)∥2),
R ∈ RN×(D+1) where each Row j is x̃(j)T , V ∈ RN×D

with the jth row being vT
j , Y ∈ RN×D with row entries of

y(j)T , and Z is a zero matrix with the proper size.
Accordingly, the solution β∗ is obtained by:

β∗ =

[
V∗

W∗

]
=

[
M R
RT Z

]−1 [
Y
Z

]
. (S5)

Using the equations above, β∗ can be formulated as a differ-
entiable function, ensuring integration with gradient-based
optimization frameworks.
Finally, the general TPS equation can be improved (e.g., to
handle noise) by incorporating a regularization term:

β∗ = argmin
β

N∑
j=1

∥Tβ(x
(j))− y(j)∥2 + λIT , (S6)

where λ is a positive hyperparameter that determines the
regularization level. As λ → ∞, the optimal transforma-
tion T tends to an affine form. This can be achieved by
modifying the matrix M to M + λI in the linear system
(Eq. S4). The parameter λ could influence the solution β∗,
leading it either toward an affine transformation as λ → ∞
or toward a fully nonlinear deformation as λ → 0.

2. Random Convolution-Based Contrast Aug-
mentation

Figure S1 illustrates the model architecture used for random
convolution (RC)-based contrast augmentation. The model
consists of five non-linear blocks, each comprising an RC
layer followed by a LeakyReLU activation. This cascaded
design efficiently captures complex and non-linear intensity
relationships across various MRI contrasts, generating di-
verse artificial contrast variations from a single scan. Addi-
tionally, Figure S2 presents axial mid-slices of augmented



Figure S1. The overall architecture of the proposed 3D contrast augmentation method using random convolution.

Figure S2. Axial mid-slices of augmented samples generated using the RC-based contrast augmentation method with 1 × 1 × 1 convolution
kernels.

samples generated using the RC-based contrast augmenta-
tion scheme. These samples demonstrate the effectiveness
of RC in simulating a wide range of artificial contrasts from
a single input scan.

To investigate the kernel size’s impact on the RC output
for contrast augmentation, we have implemented the kernel
size of 3 × 3 × 3 and 5 × 5 × 5 in all non-linear blocks of
our model. Figure S3 showcases axial mid-slices of aug-
mented samples produced using the RC-based contrast aug-

mentation method, incorporating 3 × 3 × 3 and 5 × 5 × 5
convolutions. Evidently, in these samples, the augmented
outputs exhibit a noticeable blurring effect, which can ad-
versely affect the performance of the DL models. In partic-
ular, this blurring compromises precise voxel-to-voxel cor-
respondences for our task, thereby degrading the accuracy
of anatomical landmark detection outcomes.

It is important to note that while the augmented scans
with RC are inputs to the anatomical landmark detection



Figure S3. Axial mid-slices of augmented samples generated using the RC-based contrast augmentation method with 3 × 3 × 3 and 5 ×
5 × 5 convolution kernels, resulting in visible blurring effects.

model (f(·; θ)), the calculated deformation field (Eq. 1) is
applied to deform the scans before RC augmentation (Eq.
2) and the subsequent calculation of similarity and registra-
tion loss functions. This approach is based on the fact that
RC does not alter the geometric properties of the scans but
instead generates arbitrary contrast variations. This forces
the model to predict landmarks independently of their con-
trasts. Consequently, this enables the use of a mono-modal
loss function in Eq. 2, such as mean square error (MSE),
while eliminating the need for computationally expensive
metrics like mutual information (MI), normalized mutual
information (NMI), or descriptors like modality indepen-
dent neighborhood descriptor (MIND).

3. Baselines

It is important to note that we did not include the 3D U-
Net as one of our baselines for direct landmark detection
because it failed to converge and performed poorly on the
publicly available test sets. This outcome was expected,
as 3D U-Net typically has a much heavier parameter load
compared to simpler architectures like the 3D supervised
CNN we implemented. Given our limited labeled data
(122 scans), the 3D U-Net struggled to converge effectively.
Therefore, we opted to use a 3D CNN as the supervised

learning baseline, which is more suited for scenarios with
constrained datasets.

4. Visual Comparison with ANTs and Key-
Morph

Samples of landmarks generated from our proposed model,
ANTs, and KeyMorph for the same subject are shown in
the axial view in Fig. S4 for comparison. Note that all
landmarks are in 3D. For easy visualization, we show the
3D points projected in the 2D axial view while using a mid-
axial MRI slice as a reference.

5. Sensitivity to the Template Choice
To assess the sensitivity of our method to the choice of tem-
plate, we tested it using the widely adopted T1-weighted
Colin27 atlas [21] (a young, single-subject template) as
an extreme alternative. The resulting MREs (in mm)
were 5.87±4.02, 5.56±3.51, 4.92±3.12, and 5.38±3.32 for
the SNSX, OASIS, HCP, and HCP-T2w datasets, respec-
tively. While the MREs are higher than using the ICBM152
(p<0.05), they are on par with KeyMorph (512 KPs) with
ICBM152 (p>0.05). This is expected, as Fonov et al. [17]
shows that a stable group-average brain MRI template re-
quires ∼160 subjects. We showed that ICBM152 didn’t im-



Figure S4. Qualitative comparison of anatomical landmark detection results using our model, ANTs, and KeyMorph. Note that the
landmarks shown are projections of 3D points in axial view for visual demonstration.

pact the results across age groups (p>0.05). Following the
suggestion of Fonov et al. [17], users have the flexibility to
choose their own template and landmark protocol with our
proposed method, as tagging a single template is not costly.

6. Robustness to Pathological Brains
While our current evaluation focuses on healthy subjects
due to the availability of annotated data, assessing robust-
ness for pathological brains is clinically important. As an
indirect accuracy test, we evaluated CABLD for Parkin-
son’s disease (PD) and Alzheimer’s disease (AD) diagnosis
(Sec. 4.6), confirming its sensitivity in detecting pathology-
related landmark differences. For a direct test, we evalu-
ated our method on 1.5T Gd-T1w MRIs of 36 PD patients
from the London Health Sciences Center Parkinson’s dis-
ease (LHSCPD) dataset [1, 53], featuring clinical scans
with disease-related anatomical degeneration (e.g., atrophy)
and additional domain shifts (unseen 1.5T field strength,
low scan contrast/quality, and Gd MRI contrast agents). Our
method achieved an MRE=5.19±2.13mm, not significantly
different from the 40-90yo healthy group results (p>0.05),
with the same age range for PD patients. Finally, upon
availability of AFIDs-compliant annotations, we will vali-
date our method for other brain disorders.

7. Computation Time
Our method achieves an average inference time of
0.35±0.012s (GPU) and 6.42±0.20s (CPU), which is
significantly faster than ANTs (MI: 428.22±3.14s, CC:
380.62±0.72s, CPU), and also faster than KeyMorph
(10.12±0.22s CPU, 0.54±0.01s GPU) and BrainMorph
(180.14±1.99s CPU, 1.24±0.30s GPU). These demonstrate
the computational efficiency of our framework for large-
scale and time-sensitive applications.


