1. Supplementary Material

A. Overview

The supplementary material is organized into the following sections:

* Section B: Implementation Details

¢ Section C: Ablation for VQ-MANO Pose Tokenizer

* Section D: In-the-Wild Reconstruction Evaluation

* Section E: Occluded and Masked Hands Reconstruction

» Section H: Effectiveness of Proposed MaskHand Components
 Section F: Impact of 2D Pose Context

* Section G: Confidence-Aware Unconditional Mesh Generation
* Section I: Masking Ratio during Training

* Section J: Effectiveness of Expectation-Approximated Differential Sampling
 Section K: Confidence-Guided Masking

 Section L: Impact of VQ-MANO Tokenizer on MaskHand

¢ Section M: Impact of Multi-Scale Features

* Section N: Deformable Cross-Attention Layers in MaskHand
¢ Section O: Qualitative Results in the Wild

Project website can be founds at https://m-usamasaleem.github.io/publication/MaskHand/
MaskHand.html.

B. Implementation Details

The implementation of MaskHand, developed using PyTorch, comprises two essential training phases: the VQ-MANO
tokenizer and the context-guided masked transformer. These phases are meticulously designed to ensure accurate 3D hand
mesh reconstruction while balancing computational efficiency and model robustness.

VQ-MANQO. In the first phase, the VQ-MANO module is trained to learn discrete latent representations of hand poses. The
pose parameters, § € R'*3, encapsulate the global orientation (f; € R?) and local rotations ([fa, . . ., 016] € R5*3) of hand
joints. The architecture of the tokenizer employs ResBlocks [5] and 1D convolutional layers for the encoder and decoder, with
a single quantization layer mapping continuous embeddings into a discrete latent space. To train the hand pose tokenizer, we
utilized a range of datasets capturing diverse hand poses, interactions, and settings. Specifically, we leveraged DexYCB [3],
InterHand2.6M [9], MTC [14], and RHD [15]. These datasets collectively provide a rich spectrum of annotated data, enabling
the model to generalize effectively across various real-world scenarios. The training process spans 400K iterations and uses
the Adam optimizer with a batch size of 512 and a learning rate of 1 x 10, The loss function combines reconstruction and
regularization objectives, weighted as Arecon = 1.0, Ag = 0.02, Ay = 1.0, Ay = 0.5, and Ay = 0.3. The final pose tokenizer
is trained on DexYCB, InterHand2.6M, MTC, and RHD datasets, resulting in a model with 64 tokens and a codebook size of
2048 x 256.

Context-Guided Masked Transformer. The second phase involves training the context-guided masked transformer, with
the pose tokenizer frozen to leverage its pre-trained pose priors. This phase is dedicated to synthesizing pose tokens condi-
tioned on input images and refining the 3D mesh reconstruction. Multi-resolution feature maps at 1x and 4 x scales are used
to capture both global and local contextual details, allowing the model to handle complex hand articulations and occlusions.
The overall architecture of the system, including the Graph-based Anatomical Pose Refinement (GAPR) and Context-Infused
Masked Synthesizer. The GAPR consists of two blocks (xB) of graph transformers to effectively model joint dependencies
and ensure anatomical consistency. Meanwhile, the Context-Infused Masked Synthesizer employs four transformer layers
(xN) to integrate multi-scale image features and refine pose token predictions through deformable cross-attention and token
dependencies. The default number of iterations in Confidence-Guided Sampling is 5, which we use for the ablation study.
The overall loss function integrates multiple objectives to guide the model toward robust reconstructions:

Lioal = Lmask + Lmano + L3p + Lop,

where L, minimizes errors in masked token predictions, Lyano ensures consistency in MANO shape () and pose (6)
parameters, L3p aligns the predicted and ground-truth 3D joint positions, and L,p preserves accurate 2D joint projections.
The loss weights are configured as Apask = 1.0, Amano = 1.5 x 1072 (with Ay = 1 x 1073 for pose and Ag = 5 x 1074



for shape), A\3p = 5 x 1072, and \;p = 1 x 1072, This phase is trained for 200K iterations using the Adam optimizer on
NVIDIA RTX A6000 GPUs with a batch size of 48 and a learning rate of 1 x 107°.

Generalization to Text-to-Mesh Generation Details. The MaskHand model is designed to be modular and adaptable,
extending beyond image-conditioned tasks to support text-to-mesh generation. To achieve this, we replaced image-based
conditioning with text guidance, enabling MaskHand’s Masked Synthesizer to generate diverse 3D meshes directly from
textual input. Additionally, we explored the model’s capability to synthesize meshes without 2D pose guidance, making it
rely solely on text prompts for generation. For training, we used the American Sign Language (ASL) dataset, a widely recog-
nized resource for hand-based sign language recognition in English-speaking regions such as the United States and Canada.
The dataset consists of 26 one-handed gestures representing the alphabet, making it suitable for text-to-mesh experiments.
Specifically, we used the ASL alphabet dataset from Kaggle [1] for training. Since the ASL dataset lacks 3D annotations
(e.g., MANO parameters), we leveraged MaskHand to generate pseudo-ground-truth (p-GT) annotations, which were then
used to train the text-guided version of the model. To integrate textual information, we extracted CLIP [12] embeddings
from ASL labels, enabling seamless text-based conditioning within the generative pipeline. During testing, we applied a top-
5% probabilistic sampling strategy, allowing the model to generate multiple plausible meshes per text input while ensuring
diversity and consistency in synthesis.

B.1. Data Augmentation

In the initial training phase, the VQ-MANO module leverages prior knowledge of valid hand poses, serving as a critical
foundation for the robust performance of the overall MaskHand pipeline. To deepen the model’s understanding of pose
parameters, hand poses are systematically rotated across diverse angles, enabling it to effectively learn under varying orienta-
tions. In the subsequent training phase, the robustness of MaskHand is further enhanced through an extensive augmentation
strategy applied to both input images and hand poses. These augmentations—such as scaling, rotations, random horizontal
flips, and color jittering—introduce significant variability into the training data. By simulating real-world challenges like
occlusions and incomplete pose information, these transformations prepare the model for complex, unpredictable scenar-
ios. This comprehensive approach to data augmentation is a cornerstone of the training process, significantly improving the
model’s ability to generalize and produce reliable, precise 3D hand mesh reconstructions across a wide range of conditions.

B.2. Camera Model

In the MaskHand pipeline, a simplified perspective camera model is employed to project 3D joints onto 2D coordinates,
striking a balance between computational efficiency and accuracy. The camera parameters, collectively represented by II,
include a fixed focal length, an intrinsic matrix K € R3*3, and a translation vector ' € R3. To streamline computations,
the rotation matrix R is replaced with the identity matrix I3, further simplifying the model. The projection of 3D joints
Jap onto 2D coordinates J,p is described as Jop = II(J3p), where the operation encapsulates both the intrinsic parameters
and the translation vector. This modeling approach reduces the parameter space, enabling computational efficiency while
maintaining the accuracy required for robust 3D hand mesh reconstruction. By focusing on the most critical components, the
model minimizes complexity without compromising performance.

C. Ablation for VQ-MANO

Tables | and 2 summarize an ablation study on the Freihand [16] dataset, focusing on two key parameters: the number of
pose tokens and the codebook size. Table 1 shows that increasing the number of pose tokens, while fixing the codebook size
at 2048 x 256, improves performance significantly, reducing PA-MPJPE from 1.01 mm to 0.41 mm and PA-MPVPE from
0.97 mm to 0.41 mm as tokens increase from 16 to 128. Table 2 highlights the effect of increasing the codebook size with a
fixed token count of 64, showing a reduction in PA-MPJPE from 0.66 mm to 0.43 mm and PA-MPVPE from 0.65 mm to 0.44
mm as the size grows from 1024 x 256 to 4096 x 256. Notably, the codebook size has a stronger impact on performance than
the number of pose tokens. The final configuration, with a codebook size of 2048 x 256 and 64 tokens, balances efficiency
and accuracy, achieving PA-MPJPE of 0.47 mm and PA-MPVPE of 0.44 mm. These results emphasize the importance of
jointly optimizing these parameters for effective hand pose tokenization.

D. In-the-Wild Reconstruction Evaluation

Table 3 presents a zero-shot evaluation comparing MaskHand with recent state-of-the-art methods on the challenging HInt
benchmark using the PCK metric. MaskHand consistently achieves the best results across all subsets—NewDays, VISOR,
and Ego4D—and evaluation criteria (All Joints and Visible Joints). Notably, MaskHand significantly surpasses HaMeR



Table 1. Stage-1: Impact of Number of Pose Tokens (Codebook = 2048 x 256) on VQ-MANO on Freihand dataset

Number of Pose Tokens
Metric 16 32 64 128

PA-MPJPE (mm) 1.01 0.59 047 041
PA-MPVPE (mm) 0.97 0.57 044 041

Table 2. Stage-1: Impact of Number of Codebook Size (Pose Tokens = 64) on VQ-MANO on Freihand dataset

Number of Codebook Size
Metric 1024 x 256 2048 x 128 2048 x 256 4096 x 256
PA-MPJPE (mm) 0.66 0.56 0.47 0.43
PA-MPVPE (mm) 0.65 0.58 0.44 0.44
Orignal Image Input HaMeR MaskHand (Ours) Orignal Image Input HaMeR MaskHand (Ours)

Masked Image

Masked Image

Figure 1. SOTA Comparison: Qualitative zero-shot evaluation on HInt Benchmark [11] for heavily masked hand images. MaskHand
reconstructs occluded hand poses, demonstrating robustness to severe occlusions and generalizability to unseen masked regions.

(previous SOTA), demonstrating improvements of up to 7.5% at the strictest threshold (PCK@0.05) on Ego4D (46.4% vs.
HaMeR’s 38.9%) and 3.1% on VISOR (46.1% vs. 43.0%) for All Joints. Similar trends appear with Visible Joints, where
MaskHand improves by 5.6% on VISOR (62.1% vs. HaMeR’s 56.6%) and 7.3% on Ego4D (59.3% vs. 52.0%). These sub-
stantial gains underscore MaskHand’s superior accuracy and robustness in reconstructing hands under challenging, real-world
occlusions. While the model demonstrates impressive performance, the results also highlight areas for future improvements,



particularly in severely occluded regions, where further advancements could provide additional gains in accuracy.

Table 3. Zero-Shot In-the-Wild Robustness Evaluation on the HInt Benchmark [11] using the PCK Metric: Comparison with SOTA
Methods. None of the models were trained on or have previously seen the HInt dataset.

Method Venue | NewDays | VISOR | Egod4D
\ @0.05 (1) @O0.1(1) @0.15(T) \ @0.05 (1) @O0.1(1) @0.15(7) \ @0.05 (1) @O0.1(1) @O0.15(T)
All Joints
FrankMocap [13] ICCVW 2021 16.1 41.4 60.2 16.8 45.6 66.2 13.1 36.9 55.8
METRO [7] CVPR 2021 14.7 38.8 57.3 16.8 454 65.7 13.2 35.7 54.3
MeshGraphormer [8] ICCV 2021 16.8 42.0 59.7 19.1 48.5 67.4 14.6 38.2 56.0
HandOccNet (param) [10] CVPR 2022 9.1 28.4 47.8 8.1 27.7 49.3 7.7 26.5 47.7
HandOccNet (no param) [10] CVPR 2022 13.7 39.1 59.3 12.4 38.7 61.8 10.9 35.1 58.9
HaMeR [11] CVPR 2024 48.0 78.0 83.8 43.0 76.9 89.3 38.9 71.3 84.4
MaskHand Ours \ 48.7 79.2 90.0 \ 46.1 81.4 92.1 46.4 71.5 90.1
Visible Joints

FrankMocap [13] ICCVW 2021 20.1 49.2 67.6 20.4 52.3 71.6 16.3 432 62.0
METRO [7] CVPR 2021 19.2 47.6 66.0 19.7 51.9 72.0 15.8 41.7 60.3
MeshGraphormer [8] ICCV 2021 22.3 51.6 68.8 23.6 56.4 74.7 18.4 45.6 63.2
HandOccNet (param) [10] CVPR 2022 10.2 31.4 51.2 8.5 27.9 49.8 7.3 26.1 48.0
HandOccNet (no param) [10] CVPR 2022 15.7 43.4 64.0 13.1 39.9 63.2 11.2 36.2 56.0
HaMeR [11] CVPR 2024 60.8 87.9 94.4 56.6 88.0 94.7 52.0 83.2 91.3
MaskHand Ours ‘ 61.0 87.1 94.8 62.1 90.2 95.0 59.3 88.3 94.4

E. Occluded and Masked Hands Reconstruction

Figure | provides a qualitative, zero-shot comparison between MaskHand and the state-of-the-art HaMeR method on severely
masked images (with hand regions masked around 90%). Despite significant occlusion, MaskHand consistently generates
more plausible and anatomically accurate hand reconstructions than HaMeR. Specifically, MaskHand effectively synthesizes
occluded regions, demonstrating robust generalization to previously unseen masked areas and preserving natural hand poses
and orientations. In contrast, HaMeR exhibits noticeable reconstruction failures, inaccuracies, and unnatural poses, particu-
larly under extreme masking conditions. These results highlight MaskHand’s superior capability in modeling uncertainty and
synthesizing realistic meshes under severe occlusion, underscoring its robustness and practical effectiveness in challenging
real-world scenarios.

F. Impact of 2D Pose Context

We investigate how the accuracy of the 2D pose estimator influences MaskHand’s 3D reconstruction performance. In our
main experiments, we utilize a lightweight OpenPose estimator OpenPose due to its computational efficiency and suitability
for real-time applications. To quantify how improvements in 2D pose estimation may affect overall reconstruction quality, we
conduct an additional analysis comparing OpenPose predictions against ground-truth 2D keypoints on the FreiHAND dataset.
As shown in Table 4, using ground-truth 2D poses consistently yields better reconstruction metrics, notably improving both
PA-MPJPE and PA-MPVPE. Although MaskHand achieves robust performance even with estimated keypoints, this analysis
indicates that further advances in 2D pose estimation accuracy can directly enhance the quality of reconstructed 3D hand
meshes.

Estimator PA-MPJPE PA-MPVPE F@5mm F@I15mm
Ground Truth 5.2 5.1 0.834 0.993
2D OpenPose [2] Estimator 5.5 5.4 0.801 0.991

Table 4. Impact of 2D Pose Estimator on 3D Reconstruction Quality on Friehand dataset [16]

G. Confidence-Aware Unconditional Mesh Generation

MaskHand enables confidence-aware unconditional 3D hand mesh generation by leveraging generative masked modeling and
probabilistic sampling. We generate 2,000 hand meshes by setting the image condition to zero in the image encoder, ensuring



Methods APD(mm)T SI(%)]
PCA 16.3 0.32
MaskHand (ours) 19.3 0.04

Table 5. Confidence-Aware Unconditional Mesh Generation

that synthesis is driven entirely by the learned pose distribution. Using Top-100 sampling, MaskHand not only produces high-
quality, diverse meshes but also quantifies the confidence of each generated hand configuration. This confidence estimation
allows MaskHand to distinguish between physically plausible and invalid meshes, an advantage over diffusion-based HHMR
[6], which lacks direct plausibility quantification.

In contrast, PCA-based generation, which samples from the MANO parameter space, produces structurally valid but
limited and less diverse hand poses due to its restriction to the linear PCA subspace. The qualitative results (Figure 2)
highlight MaskHand’s ability to synthesize highly articulated hand poses, while lower-confidence samples exhibit unnatural
deformations, demonstrating its uncertainty quantification capability. Quantitatively, MaskHand achieves greater diversity
than PCA, as reflected in a higher APD (19.3mm vs. 16.3mm), and generates more realistic meshes, reducing self-intersection
(SD from 0.32% to 0.04% (Table 5). These results confirm that MaskHand surpasses PCA in both diversity and realism,
offering a principled approach to filtering implausible generations, making it a more reliable solution for unconditional 3D

hand synthesis.
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Figure 2. Confidence-Aware Unconditional Mesh Generation
The ablation study on HO3Dv3 (Table 6) highlights GAPR as the most critical component, ensuring joint dependencies and
anatomical coherence. Removing the Upsampler and 2D Pose Context slightly reduces accuracy, affecting fine details and
spatial cues. The full MaskHand model achieves the best results, demonstrating the importance of these components for high-
precision 3D hand mesh recovery. Qualitative comparisons in Figure 3 further illustrate these effects, showing the impact of
each component on reconstruction quality.

H. Effectiveness of Proposed MaskHand Components

Method PA-MPJPE PA-MPVPE F@5mm AUC; AUCy
w/o. Upsampler 7.2 7.2 0.654 0.857  0.857
w/o. 2D Pose Context 7.1 7.1 0.656 0.857  0.858
w/o. GAPR 7.3 7.3 0.645 0.853  0.854
MaskHand (Full) 7.0 7.0 0.663 0.860 0.860

Table 6. Ablation study of testing results on the HO3Dv3 dataset [4] to evaluate the impact of proposed components. w/o’ denotes
’without’.

I. Masking Ratio during Training

The ablation study in Table 7 shows that a broader masking range (7 € (0, 0.7)) achieves optimal results on HO3Dv3
and FreiHAND, with the lowest PA-MPVPE values of 7.0 and 5.5, respectively. This cosine-based masking strategy, where



Input Ground Truth MaskHand (full) w/o. 2D Pose Context w/o. Upsampler w/o. GAPR

Figure 3. Qualitative ablation study on component impact: Full model achieves highest accuracy, validating each component’s role.

the model learns to reconstruct from partially masked sequences, enhances robustness in 3D hand reconstruction. Narrower
masking ranges, such as (7 € U(0, 0.3)), increase error, highlighting the importance of challenging the model with broader
masking for better generalization.

Table 7. Impact of masking ratio during training on HO3Dv3 [4] and FreiHAND [16] datasets.

Masking Ratio y(7) HO3Dv3 FreiHAND
PA-MPJPE PA-MPVPE PA-MPJPE PA-MPVPE
~(1 € U(0,0.3)) 72 72 57 5.8
~(r € U(0,0.5)) 7.1 7.1 5.6 5.6
~(r € U(0,0.7)) 7.0 7.0 55 54
~(r € U(0,1.0)) 72 7.3 5.8 5.7

J. Effectiveness of Expectation-Approximated Differential Sampling

The results presented in Table 8 highlight the critical role of Expectation-Approximated Differential Sampling in enabling
accurate and robust 3D hand mesh recovery. The configuration utilizing all loss components—ZL,,,qs%, Larano, Lsp, Lep,



and S—achieves the lowest PA-MPJPE and PA-MPVPE values of 0.70 mm on HO3Dv2 and 5.5 mm on FreiHAND, under-
scoring the importance of a holistic training approach. This configuration demonstrates the complementary strengths of Lsp
in enforcing anatomical coherence, Lop in mitigating monocular depth ambiguities, and L, in iteratively refining pose
token predictions. Excluding critical components such as Lsp or Lap leads to substantial degradation in performance, with
errors rising to 8.1 mm on HO3Dv2 and 7.0 mm on FreiHAND. These results emphasize the necessity of these constraints for
accurate 2D-to-3D alignment and plausible pose synthesis. Expectation-Approximated Differential Sampling is instrumental
in this process, as it facilitates seamless integration of these losses by leveraging a differentiable framework for token refine-
ment. This approach ensures that the latent pose space is effectively optimized, enabling the model to balance fine-grained
token accuracy with global pose coherence. These findings validate the pivotal role of differential sampling in guiding the
learning process, resulting in precise and confident 3D reconstructions under challenging scenarios.

Table 8. Impact of different loss combinations on PA-MPJPE and PA-MPVPE errors ( in mm) for the HO3Dv2 and FreiHAND datasets.

Used Losses HO3Dv2 FreiHAND

PA-MPJPE | PA-MPVPE| PA-MPJPE| PA-MPVPE |

Lonask, B 7.6 7.5 6.1 6.3
Loask, Laranvo, B 7.5 7.5 6.0 6.2
Lyask, Lavyano, Lsp, Lop, B 7.0 7.0 5.5 54
Lsp, B 8.1 7.9 6.5 6.7
Lonask, Lviano, Lop, B 7.4 7.3 6.3 6.4

K. Confidence-Guided Masking

Figure 4 illustrates the iterative process of Confidence-Guided Sampling used during inference for refining pose predictions.
The gray bars represent the total number of masked tokens across iterations, while the green line tracks the average confidence
in the model’s predictions. At the initial iteration, the majority of pose tokens remain masked, indicating high uncertainty. As
iterations progress, the number of masked tokens decreases significantly, which aligns with a steady increase in the model’s
confidence. By the final iteration, only a minimal number of tokens remain masked, while the average confidence approaches
its peak. This visualization highlights the systematic reduction in uncertainty and refinement of predictions over multiple
iterations, enabling robust 3D pose reconstruction.

Progression of Masked Tokens and Average Confidence Across Iterations
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Figure 4. Progression of Masked Tokens and Average Confidence Across Iterations. This figure visualizes the iterative refinement process
in Confidence-Guided Sampling. The gray bars represent the number of masked tokens at each iteration, starting from a fully masked
sequence and progressively decreasing. The green curve shows the corresponding average confidence in the model’s predictions, which
increases steadily with iterations. This dynamic showcases the effectiveness of the sampling strategy in resolving ambiguities and refining
3D pose estimates, culminating in high-confidence predictions with minimal masking by the final iteration.



L. Impact of Pose Tokenizer on MaskHand

The results presented in Table 9 demonstrate the critical influence of the Pose Tokenizer’s design on the performance of
MaskHand. Increasing the codebook size from 1024 x 256 to 2048 x 256 yields significant improvements in both PA-
MPIJPE and MVE metrics across the HO3Dv3 and FreiHAND datasets. This indicates that a moderately larger codebook
provides richer and more expressive pose representations, enabling better reconstruction of complex 3D hand poses. However,
expanding the codebook further to 4096 x 256 diminishes accuracy, suggesting that an overly large codebook introduces
unnecessary complexity, making it harder for the model to generalize effectively.

Table 9. Impact of Codebook Size (Tokens = 96) on MaskHand.

HO3Dv3 FreiHAND
# of code x MPJPE MVE MPIJPE MVE
code dimension (@) () () (@)

1024 x 256 7.2 7.3 6.1 6.1
2048 x 128 7.1 7.2 5.7 5.6
2048 x 256 7.0 7.0 5.5 54

M. Impact of Multi-Scale Features

The ablation study on multi-scale feature resolutions in MaskHand (as shown in Table 10) highlights the trade-off between
accuracy and computational cost. Including resolutions up to 4x yields slight accuracy gains, with PA-MPJPE reducing to
7.0 mm on HO3Dv3 and 5.7 mm on FreiHAND. However, the addition of higher resolutions, such as 1x and 2Xx, results in
inconsistent or degraded performance. Specifically, the inclusion of 1x,4x,8x scales increases PA-MPJPE to 7.2 mm on
HO3Dv3 and 5.8 mm on FreiHAND. Adding 2x further worsens performance, reaching 7.6 mm on HO3Dv3 and 6.1 mm
on FreiHAND, while significantly increasing computational overhead. Notably, the omission of lower-scale features (e.g.,
1x) leads to performance degradation, highlighting the importance of combining fine-grained details with holistic structure.
While multi-scale features remain critical, the study demonstrates that not all resolutions contribute equally, with 1x and 4 x
emerging as the optimal balance for accuracy and computational efficiency.

Table 10. Impact of feature resolutions on PA-MPJPE and PA-MPVPE errors for HO3Dv3 and FreiHAND datasets.

Feature Scales (Included) HO3Dv3 | FreiHAND |

PA-MPJPE PA-MPVPE PA-MPJPE PA-MPVPE

1x 7.1 7.1 5.6 5.6
1x,4x 7.0 7.0 5.5 54
1x,4x,8x 7.2 7.2 5.6 5.7
1x,8x,16x 7.1 7.1 5.7 5.6
1x,4x,8x, 16X 7.6 7.5 59 6.0

N. Deformable Cross-Attention Layers in MaskHand

The ablation study in Table 11 highlights the pivotal role of Deformable Cross-Attention Layers in the Context-Infused
Masked Synthesizer of MaskHand. Increasing layers from 2 to 4 yields significant performance gains, reducing PA-MPJPE
to 5.7 mm and PA-MPVPE to 5.5 mm on the FreiHAND dataset. This improvement underscores the layers’ effectiveness
in fusing multi-scale contextual features and refining token dependencies for enhanced 3D hand mesh reconstruction. How-
ever, further increasing the layers beyond 4 results in diminishing returns, with slight performance degradation at 6 and 8
layers (e.g., PA-MPVPE increases to 5.8 mm and 6.1 mm, respectively). This decline suggests that additional layers intro-
duce unnecessary complexity, potentially overfitting or disrupting the model’s ability to generalize effectively. The findings



reveal that 4 layers provide the optimal balance, leveraging the benefits of cross-attention mechanisms without incurring
computational overhead or accuracy trade-offs.

Table 11. Impact of Deformable Cross Attention Layers on FreiHAND dataset.

Metric 2 Layers 4 Layers 6 Layers 8 Layers
PA-MPJPE 6.3 55 5.5 5.7
PA-MPVPE 6.7 54 5.8 5.8

0. Qualitative Results in the Wild

Comparison of State-of-the-Art (SOTA) Methods. Figure 5 demonstrates the superiority of MaskHand over other SOTA
methods in recovering 3D hand meshes. Unlike competing approaches, MaskHand employs a generative masked modeling
framework, enabling it to synthesize unobserved or occluded hand regions. This capability allows MaskHand to achieve
robust and precise 3D reconstructions, even in scenarios with heavy occlusions, intricate hand-object interactions, or diverse
hand poses. By refining masked tokens, MaskHand effectively addresses ambiguities in the 2D-to-3D mapping process,
resulting in highly accurate reconstructions.

Multiple Reconstruction Hypotheses with Explicit Confidence Levels. Figure 6 and 7 illustrates MaskHand’s 3D hand
mesh reconstructions in occluded scenarios, ranked by confidence. The comparison of reconstructions across different con-
fidence levels reveals that high-confidence hypotheses produce meshes that closely align with the ground truth, ensuring
structural accuracy and fidelity. As confidence decreases (e.g., from the 100th to the 1000th hypothesis), the reconstruc-
tions degrade, exhibiting distortions and unrealistic poses. This highlights the significance of MaskHand’s confidence-aware
modeling, where prioritizing high-confidence hypotheses leads to more accurate and robust 3D hand reconstructions.

Reference Key Points in the Deformable Cross-Attention. Figure 8 visualizes the interaction between reference keypoints
(yellow) and sampling offsets (red) in the Deformable Cross-Attention module of MaskHand’s Masked Synthesizer. By
leveraging 2D pose as guidance, the model dynamically samples and refines critical features for accurate 3D reconstruction.
This mechanism proves crucial in handling severe occlusions, intricate hand-object interactions, and complex viewpoints,
ensuring precise alignment between 2D observations and 3D predictions.

MaskHand’s Performance on In-the-Wild Images. Figure 9 highlights MaskHand’s robustness in real-world conditions.
The model demonstrates its ability to recover accurate 3D hand meshes from single RGB images, excelling in challenging
scenarios such as occlusions, hand-object interactions, and diverse hand appearances. This versatility underscores Mask-
Hand’s applicability to real-world tasks, where robust and reliable performance is essential. Challenging Poses from the

HInt Benchmark. Figure 10 and 11 illustrates MaskHand’s effectiveness in reconstructing 3D hand meshes for chal-
lenging poses from the HInt Benchmark [11]. The model accurately handles extreme articulations and unconventional hand
configurations, showcasing its ability to generalize to complex datasets and produce high-fidelity results.
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Multiple Reconstruction Hypotheses with Explicit Confidence Levels
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Figure 6. Multiple reconstruction hypotheses with explicit confidence levels. The figure illustrates MaskHand’s 3D hand mesh reconstruc-
tions in occluded scenarios, ranked by confidence. High-confidence hypotheses closely align with the ground truth, ensuring structural
accuracy and fidelity. As confidence decreases (e.g., from the 100th to the 1000th hypothesis), reconstructions degrade, exhibiting dis-
tortions and unrealistic poses. This highlights the importance of prioritizing high-confidence hypotheses for robust and accurate 3D hand
reconstruction.
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Figure 7. Multiple reconstruction hypotheses with explicit confidence levels. The figure illustrates MaskHand’s 3D hand mesh reconstruc-
tions in occluded scenarios, ranked by confidence. High-confidence hypotheses closely align with the ground truth, ensuring structural
accuracy and fidelity. As confidence decreases (e.g., from the 100th to the 1000th hypothesis), reconstructions degrade, exhibiting dis-
tortions and unrealistic poses. This highlights the importance of prioritizing high-confidence hypotheses for robust and accurate 3D hand
reconstruction.
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Figure 8. Visualization of reference key points (yellow) and sampling offsets (red) in the Deformable Cross-Attention module of Mask-
Hand’s Masked Synthesizer. The 2D pose acts as a guidance signal, enabling the model to dynamically sample and refine features critical
for reconstructing accurate 3D hand meshes (rightmost column). This mechanism adapts to challenging scenarios, such as severe occlu-
sions, intricate hand-object interactions, and complex viewpoints, ensuring precise alignment between 2D observations and 3D predictions
for robust and high-fidelity reconstructions.



Figure 9. MaskHand’s performance on in-the-wild images, demonstrating its ability to recover accurate and robust 3D hand meshes
from single RGB inputs. The model excels in challenging scenarios, including occlusions, hand-object interactions, and diverse hand
appearances, showcasing its versatility and reliability in real-world conditions.
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Figure 10. Qualitative results of our approach on challenging poses from the HInt Benchmark [11] dataset.
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Figure 11. Qualitative results of our approach on challenging poses from the HInt Benchmark [11] dataset.



