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6. Appendix
6.1. Additional Experiments
Comparison to TimeT. Here, we compare MoSiC with
TimeT, both initialized from the same DINO backbone. As
shown in Figure 5, MoSiC consistently outperforms TimeT
across Pascal VOC and ADE20K for both DINO and DI-
NOv2 backbones. Notably, while TimeT struggles to fur-
ther enhance strong vision backbones such as DINOv2 be-
yond the baseline, MoSiC achieves consistent improvements
across all benchmarks, demonstrating its greater generaliz-
ability.

Image classification performance. As shown in Table 8,
while MoSiC significantly enhances the dense understanding
of DINOv2, it results in only a 0.8% performance reduc-
tion—negligible compared to the gains of up to 6% in certain
benchmarks.

Table 8. MoSiC vs. DINOv2 on downstream image classification.
MoSiC greatly improves DINOv2’s dense understanding while
incurring a minimal 0.8% performance reduction, outweighed by
gains of up to 6% in some benchmarks.

Method Backbone CIFAR-100 ImgNet-100 CIFAR-10 Average
DINOv2 ViT-B/14 86.2% 90.5% 97.8% 91.5%
MoSiC ViT-B/14 84.8% 89.9% 97.3% 90.7%

Full finetuning results. In Table 9 and Table 10, we eval-
uate the performance of MoSiC when used as the backbone
for object detection and semantic segmentation in the full
finetuning setting. For object detection ViT-Det [38] and for
semantic segmentation Segmenter [55] frameworks are used.
As shown, our method consistently outperforms DINOv2
across all datasets and evaluation protocols, setting a new
state-of-the-art—despite being fine-tuned solely on video
data that differs in distribution from the evaluation datasets.

*Equal Contribution. Correspondence: s.salehidehnavi@uva.nl

Since full finetuning updates all model parameters, the supe-
rior performance of MoSiC indicates that learning a more
structured, object-aware feature space is achievable even
without any image dataset, by finetuning on videos alone.

Table 9. MoSiC vs. DINOv2 on object detection. We use
ViTDet [38] on COCO [8] and report Average Precision (AP) on
bounding-box object detection (APbox) and instance segmentation
(APmask).

Method Backbone Params APbox APmask

DINOv2 ViT-S/14 21M 42.5 36.7
MoSiC ViT-S/14 21M 42.5 36.8
DINOv2 ViT-B/14 85M 46.1 41.9
MoSiC ViT-B/14 85M 46.4 42.0
DINOv2 ViT-L/14 307M 51.6 45.9
MoSiC ViT-L/14 307M 51.8 46.0

Generalization to large variants. We report the perfor-
mance for the large variant of MoSiC for all the experiments
in the paper, as shown by Table 9, Table 10, Table 11, Ta-
ble 12a, Table 12b, Table 13, and Table 14. Our model can
increase the performance of DINOv2-L even more than the
small and base variants, showing the effectiveness of our
method on large models.

Tracker ablation. We train and evaluate MoSiC using
both RAFT and CoTrackerv2 to investigate the effect of
different trackers on our method. From Table 15, MoSiC im-
proves over DINOv2 with both these point trackers. MoSiC
is compatible with multiple point trackers, yet the better the
tracker, the better MoSiC performs.

6.2. Additional Visualizations
Hummingbird qualitative results for MoSiC. Here, we
show the qualitative results of our method for the visual
in-context learning evaluation (Hummingbird benchmark)
shown by Table 1. As shown, although MoSiC is finetuned
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Figure 5. TimeT vs. MoSiC. As the figure shows, MoSiC consistently improves both DINO and DINOv2 backbones, while TimeT only
improves DINO.

Table 10. Evaluation of full Finetuning with Segmenter. Various backbones pre-trained with different self-supervised learning methods
are fine-tuned using Segmenter [55]. The table shows the mIoU scores obtained on validation sets across 4 different datasets.

Method Backbone Params Pascal Context Pascal VOC COCO-Stuff ADE20K
DINO ViT-S/16 21M 46.0 80.3 43.2 43.3
CrOC ViT-S/16 21M 46.0 80.9 42.9 42.8
TimeT ViT-S/16 21M 47.4 80.4 43.1 43.5
CrIBo ViT-S/16 21M 49.3 82.3 43.9 45.2
DINOV2 ViT-S/14 21M 58.0 80.4 42.1 44.0
MoSiC ViT-S/14 21M 58.5 81.1 42.5 44.4
DINO ViT-B/16 85M 45.8 82.2 44.4 45.0
MAE ViT-B/16 85M 47.9 82.7 45.5 46.4
CrIBo ViT-B/16 85M 49.2 83.4 44.6 46.0
DINOV2 ViT-B/14 85M 62.0 85.2 48.3 51.9
MoSiC ViT-B/14 85M 62.5 85.8 48.6 52.4

on YTVOS videos—which differ significantly in distribution
from Pascal—it still produces accurate and precise semantic
segmentation maps, characterized by distinct IDs and tight
boundaries.

Overclustering visualizations for MoSiC. We present
the overclustering qualitative results of MoSiC on Pascal
VOC for K = 50, approximately twice the number of object
categories in the dataset, as shown in Figure 7. As shown,
MoSiC not only localizes objects precisely but also identify
them with different cluster ids demonstrated by different
colors. For instance, classes such as birds, motorcycles,
dogs, cats, and cars are clearly identifiable.

Failure cases. While MoSiC is robust to occlusions, it can
struggle when motion cues are subtle or ambiguous, reduc-
ing the effectiveness of clustering supervision. In rare cases
of tracker failure—due to extreme motion, prolonged occlu-
sions, or appearance changes—noisy trajectories may propa-
gate incorrect signals (Figure 8). Overly dense tracking (e.g.,
32⇥32 grids) can similarly introduce spurious correspon-
dences (Ablations - Table 5c). These issues arise from depen-
dence on accurate tracking and clustering, though MoSiC
mitigates them by focusing losses on visible points.

6.3. Dense Post-Pretraining
Implementation Framework We implement our model
in Python using Torch [46].
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Table 11. In-context scene understanding benchmark. We evaluate dense nearest neighbor retrieval performance across various training
data proportions on ADE20K [69] and Pascal VOC [18]. Retrieved cluster maps are compared with the ground truth via Hungarian
matching [33]. We report mIoU; higher is better.

ADE20K PASCAL VOC
METHOD BACKBONE PARAMS 1/128 1/64 1/8 1/1 1/128 1/64 1/8 1/1

TRAINED ON IMAGES

DINO [10] ViT-S/16 21M 9.5 11.0 15.0 17.9 26.4 30.5 41.3 48.7
CrOC [54] ViT-S/16 21M 8.7 10.8 15.2 17.3 34.0 41.8 53.8 60.5
SelfPatch [66] ViT-S/16 21M 10.0 10.9 14.7 17.7 28.4 32.6 43.2 50.8
Leopart [71] ViT-S/16 21M 12.9 14.8 19.6 23.9 44.6 49.7 58.4 64.5
CrlBo [36] ViT-S/16 21M 14.6 17.3 22.7 26.6 53.9 59.9 66.9 72.4
DINOv2 [42] ViT-S/14 21M 22.8 26.4 33.5 38.8 56.0 62.4 72.3 77.0

FINETUNED ON VIDEOS

TimeT [50] ViT-S/16 21M 12.1 14.1 18.9 23.2 38.1 43.8 55.2 62.3
MoSiC ViT-S/14 21M 23.8 27.4 35.7 40.7 62.5 66.6 74.7 78.2

TRAINED ON IMAGES

MAE [23] ViT-B/16 85M 10.0 11.3 15.4 18.6 3.5 4.1 5.6 7.0
DINO [10] ViT-B/16 85M 11.5 13.5 18.2 21.5 33.1 37.7 49.8 57.3
Leopart [71] ViT-B/16 85M 14.6 16.8 21.8 26.7 50.1 54.7 63.1 69.5
Hummingbird [5] ViT-B/16 85M 11.7 15.1 22.3 29.6 50.5 57.2 64.3 71.8
CrlBo [36] ViT-B/16 85M 15.9 18.4 24.4 28.4 55.9 61.8 69.2 74.2
DINOv2 [42] ViT-B/14 85M 24.2 27.6 34.7 39.9 55.7 61.8 72.4 77.1

FINETUNED ON VIDEOS

MoSiC ViT-B/14 85M 25.4 29.3 37.3 42.6 65.5 69.8 76.9 80.5
DINOv2 [42] ViT-L/14 307M 22.0 25.2 32.8 37.9 47.9 54.8 68.1 74.4
MoSiC ViT-L/14 307M 24.7 28.1 35.7 41.0 55.0 62.0 73.6 78.5

Table 12. Frozen clustering-based evaluations. (a) We evaluate the models using K-means with various clustering granularities K on the
features of Pascal VOC [18] and COCO-Things [8]. Cluster maps are matched to the ground-truth via Hungarian matching [33], We report
mIoU; higher is better. (b) We post-process these maps for unsupervised semantic segmentation on Pascal VOC. †: ViT-S/16.

(a) Clustering

PASCAL VOC COCO-THINGS

METHOD K=100 K=300 K=500 K=100 K=300 K=500

TRAINED ON IMAGES

DINO [10]† 10.1 13.9 17.3 14.4 18.8 19.2
CrOC [54]† 10.2 16.4 20.0 22.4 14.7 18.1
iBOT [70]† 16.5 23.8 31.1 15.5 26.6 28.0
EVA-CLIP [56] 31.7 37.4 41.4 30.5 38.0 39.8
DINOv2R-S14 [16] 34.8 46.7 49.5 32.0 38.9 41.2
Leopart [71]† 39.2 46.5 51.2 38.3 47.8 53.2
CrIBo [36]† 40.3 51.3 54.5 40.2 46.0 48.3
DINOv2-S14 [42] 43.2 55.1 58.6 43.8 51.6 53.1

FINETUNED ON VIDEOS

TimeT-S16 [50]† 34.6 43.6 46.2 34.9 42.7 44.6
MoSiC-S14 50.0 58.8 60.2 45.8 53.2 54.9
MoSiC-B14 52.5 62.1 65.7 47.8 56.3 58.6
MoSiC-L14 54.8 69.6 71.3 51.1 59.0 60.8

(b) Semantic segmentation

METHOD MIOU

TRAINED ON IMAGES

MaskConstrast [59]† 35.1
DINOv2R-S14 [16] 35.1
DINOv2-S14 [42] 37.5
DINOv2-B14 [42] 36.7
DeepSpectral [40]† 37.2
DINOSAUR† [52] 37.2
Leopart [71]† 41.7
COMUS [67]† 50.0

FINETUNED ON VIDEOS

TimeT [50]† 41.1
MoSiC-S14 51.2
MoSiC-B14 54.4
MoSiC-L14 57.1

Datasets Our pretraining datasets include COCO [8] and
the ImageNet-100 subset of the original ImageNet [49].
COCO comprises approximately 118,000 scene-centric im-
ages, while ImageNet-100 contains around 100,000 object-
centric images.

Network Architecture We use vision transformers as our
backbone, specifically training on ViT-Small and ViT-Base

[17]. Following [10, 20], we adopt a student-teacher setup,
where the teacher’s weights are updated via the exponential
moving average of the student’s weights.

Projection Head As in [10], our projection head com-
prises three linear layers with a hidden dimensionality of
2048, Gaussian error linear units (GELU) as the activation
function [25], and an output dimensionality of 256.
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Table 13. Unsupervised video semantic segmentation results for clustering and over-clustering on DAVIS [48] and Youtube-VOS
(YTVOS) [65]. For clustering, the Hungarian algorithm [33] matches clusters (K) to ground truth (GT) per frame (F), clip (C), or dataset
(D). For over-clustering: K=10 (F, C), K=200 (D, DAVIS), K=500 (D, YTVOS). We report mIoU; higher is better.

CLUSTERING OVER-CLUSTERING

YTVOS DAVIS YTVOS DAVIS
F C D F C D F C D F C D

TRAINED ON IMAGES

DINO [10]† 39.1 37.9 1.9 30.2 31.0 1.6 66.2 65.4 4.0 56.9 54.9 17.9
Leopart [71]† 39.2 37.9 11.7 30.3 30.2 16.5 64.5 62.8 15.5 54.9 54.4 26.7
DINOv2-S14 [42] 56.3 55.5 12.8 57.4 57.4 13.6 62.8 62.5 17.3 57.9 58.5 25.5
DINOv2R-S14 [16] 56.8 55.4 14.7 57.3 57.8 14.3 64.0 63.5 21.5 58.1 59.5 27.2

FINETUNED ON VIDEOS

STEGO [22]† 41.5 40.3 2.0 31.9 31.0 3.2 58.1 54.3 5.1 47.6 46.3 10.4
DINO [10]† 37.2 36.1 1.2 29.3 29.2 2.4 53.1 50.9 1.3 45.4 44.0 8.6
Leopart [71]† 41.5 40.5 7.7 37.5 36.5 12.6 60.8 59.8 6.8 53.7 53.1 16.8
TimeT [50]† 50.2 51.4 12.8 49.5 49.2 12.8 60.6 59.4 18.1 55.9 57.6 22.0
MoSiC-S14 60.6 59.6 18.4 58.9 60.8 23.4 66.8 65.6 24.4 58.4 59.8 29.0
MoSiC-B14 59.5 58.6 18.7 59.5 59.2 24.2 67.2 64.1 23.1 57.9 59.3 32.0
MoSiC-L14 60.2 59.1 19.4 59.7 59.1 26.3 67.1 65.9 26.9 58.3 60.2 33.5

Table 14. Linear segmentation performance. A linear segmentation head is trained on top of the frozen spatial features obtained from
different feature extractors. We report the mIoU scores achieved on the validation sets of 4 different datasets.

METHOD BACKBONE PARAMS COCO-THINGS COCO-STUFF PASCAL VOC ADE20K

TRAINED ON IMAGES

DINO [10] ViT-S/16 21M 43.9 45.9 50.2 17.5
iBOT [70] ViT-S/16 21M 58.9 51.5 66.1 21.8
CrOC [54] ViT-S/16 21M 64.3 51.2 67.4 23.1
CrlBo [36] ViT-S/16 21M 64.3 49.1 71.6 22.7
DINOv2 [42] ViT-S/14 21M 81.4 58.3 78.9 37.9

FINETUNED ON VIDEOS

TimeT [50] ViT-S/16 21M 58.2 48.7 66.3 20.7
MoSiC ViT-S/14 21M 82.3 61.0 79.7 39.6

TRAINED ON IMAGES

DINO [10] ViT-B/16 85M 55.8 51.2 62.7 23.6
MAE [23] ViT-B/16 85M 38.0 38.6 32.9 5.8
iBOT [70] ViT-B/16 85M 69.4 55.9 73.1 30.1
CrIBo [36] ViT-B/16 85M 69.6 53.0 73.9 25.7
EVA-CLIP [56] ViT-B/14 86M 75.9 48.0 70.4 34.6
DINOv2 [42] ViT-B/14 85M 84.0 58.9 80.3 42.6

FINETUNED ON VIDEOS

MoSiC ViT-B/14 85M 85.8 61.4 81.5 43.6
DINOv2 [42] ViT-L/14 307M 83.8 58.0 79.7 41.8
MoSiC ViT-L/14 307M 85.7 61.5 81.8 44.7

Table 15. Choice of Point Trackers. In-context scene understand-
ing results (mIoU) on PVOC and ADE20K. Higher is better.

Method PVOC (mIoU) ADE20K (mIoU)
DINOv2 77.0 38.8
RAFT 77.6 39.7
CoTracker2 78.0 40.2
CoTracker3 78.2 40.7

Optimization We train both network sizes using a cosine
learning rate schedule that decays to 0 over 8 epochs for
DINOv2 and 100 epochs for DINO, except for the ablation

studies, where we use 50 epochs on DINO. The initial learn-
ing rate for the projection head is set to 1e�4 across all
experiments, while the backbone’s learning rate is 1e�5.
The teacher’s weights are updated using an exponential mov-
ing average with the coefficient 0.99. We optimize our model
with Adam [30], applying a cosine weight decay schedule.

6.4. Evaluation Setup
Visual In-Context Learning The Dense Nearest Neighbor
Retrieval Evaluation is a retrieval-based scene understanding
benchmark introduced by [5]. It aims to assess the scene
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understanding capabilities of a dense image encoder. The
evaluation follows these steps:
1. Memory Bank Construction: Given a dataset of images

with dense annotations, two memory banks are created.
One stores image patch features extracted from the spatial
output of a dense encoder applied to the training images,
while the other stores the corresponding patch labels from
the dataset annotations.

2. Query Processing: For each image in the validation set,
the spatial output of the dense image encoder is computed.
For each patch representation, the k nearest neighbors are
retrieved from the feature memory bank. The labels of
these nearest neighbors are then aggregated to construct
the query’s annotation.

3. Comparison: The generated annotation for the image is
compared against the ground truth annotation to evaluate
performance.

Since the original implementation by [5] is unavailable, we
use the open-source implementation from [43]. This im-
plementation adheres to the original authors’ methodology,
including the use of the ScaNN library [21] for efficient near-
est neighbor retrieval. For our experiments, we follow the
setup used by the Hummingbird Model authors [5], utiliz-
ing a memory size of 10, 240, 000 and configuring ScaNN
with 30 nearest neighbors, consistent with the Hummingbird
model evaluation.
Final results are reported as mean Intersection over Union
(mIoU) on four different fractions of two datasets: Pascal
VOC 2012 [18] and ADE20K [69]. The sub-sampling fac-
tors considered are 1, 8, 64, and 128. For factors greater
than 1, results are averaged over five different seeds. These
dataset subsets are created by randomly and uniformly select-
ing a distinct set of images from the training split, ensuring
an approximately equal number of unique images per anno-
tation label. For instance, for the 1/128 fraction of Pascal
VOC 2012, we sample around 83 images, ensuring that each
of the 20 labels (excluding the background) appears in at
least 4 different images within the subset.

Overclustering Following [71], we conduct the Overclus-
tering experiment by applying K-Means clustering (using
FAISS [28]) to all spatial tokens from our backbone, omitting
the projection head. The resulting clusters are then mapped
to the dataset’s ground-truth classes using a two-step pro-
cess: first, greedy matching based on pixel-level precision,
followed by Hungarian matching [33] on the combined clus-
ter maps. This procedure ensures that the evaluation metric
remains permutation-invariant [27].
Input images are resized to 448⇥ 448, while overclustering
is performed on downsampled 100 ⇥ 100 masks to accel-
erate Hungarian matching. The final results are reported
as the average mean Intersection over Union (mIoU) over
five different seeds across four datasets: COCO-Thing and

COCO-Stuff [8], Pascal VOC 2012 [18], and ADE20K [69].

Linear Segmentation For linear segmentation, we fol-
low the setup from Leopart [71]. Specifically, we process
448 ⇥ 448 images through our backbone to extract spatial
feature outputs, apply bilinear interpolation to align them
with the mask resolution, and use a linear head to generate
segmentation predictions. These predictions are then com-
pared to the ground-truth segmentation masks and optimized
using cross-entropy loss.
To speed up training, we downsample the segmentation
masks to 100 ⇥ 100. The linear head is optimized using
Stochastic Gradient Descent with a weight decay of 0.0001,
a momentum of 0.9, and a step-based learning rate sched-
uler. We find that a learning rate of 0.01 works well across
the backbone models we evaluate. The linear heads are
fine-tuned for 20 epochs.
We train and evaluate the linear heads on four datasets: Pas-
cal VOC 2012 [18], subsets of COCO-Thing and COCO-
Stuff , and ADE20K [69].

Fully Unsupervised Semantic Segmentation To further
assess the scene understanding capabilities of our method,
we evaluate it using the Fully Unsupervised Semantic Seg-
mentation Evaluation [71]. This evaluation consists of two
components: Cluster-based Foreground Extraction (CBFE)
and Overclustering with Community Detection (CD).
CBFE clusters the spatial outputs of a model over a dataset
and assigns each cluster as either background (bg) or fore-
ground (fg). The foreground-background separation is
guided by attention maps from a Vision Transformer, which
provide cues for distinguishing between fg/bg regions. To
construct the final hard fg-bg assignment, we average the
attention heads, apply Gaussian filtering with a 7⇥ 7 kernel,
and retain 70% of the attention mass to generate the binary
mask. The rest of the configurations follow the original setup
[71].
The CD metric [71] leverages local co-occurrence statis-
tics among clusters to identify and categorize objects. This
approach is entirely label-free, relying only on the local
co-occurrence of clusters within an image based on an
information-theoretic definition of network communities.
Our CD evaluation configurations remain consistent with
those used in Leopart [71].
We use the implementation from Leopart [71] and apply
CBFE and CD to the non-augmented (train) split of Pascal
VOC 2012 [18], evaluating on its full validation set. For
CD, we report the best results across 10 seeds obtained via
a hyperparameter search. Our best-performing parameters
for CD+CBFE are: weight_threshold = 0.07, markov_time
= 1.6, and k_community = 169.
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7. Dataset Details
7.1. Image Datasets
Pascal VOC 2012 [18] This dataset, using the latest trainaug
split, consists of 10,582 images with annotations spanning 21
classes, including one background class. The validation set
contains 1,449 images. Following [59], we ignore unlabeled
objects as well as the boundary class. For hyperparameter
tuning of the fully unsupervised segmentation method [71]
applied to our method, we use the PVOC12 train split with
1,464 images. Figure 10 provides an overview of dataset
images overlaid with annotations.
COCO-Stuff 164K [8] COCO-Stuff is a scene-
understanding dataset with labels across 91 "stuff"
categories and 80 "thing" categories. The training set
contains 118,000 images, while the validation set includes
5,000 images. Following [71], we use the COCO benchmark
in two ways to better isolate object definitions.
First, we extract stuff annotations, which represent objects
without clear boundaries and are often part of the back-
ground, using COCO-Stuff annotations [8]. We then con-
solidate the 91 detailed labels into 15 broader categories as
described in [27], assigning the general label “other” to non-
stuff objects since this label lacks specific semantic meaning.
Non-stuff objects are ignored during training and evaluation.
In our work, we refer to this dataset version as COCO-Stuff,
which is used for Overclustering and Linear Segmentation
(see Appendix 6.4).
Next, we extract foreground annotations using the panoptic
labels from [31]. Instance-level annotations are merged
into object categories using the authors’ provided script.
Additionally, we consolidate the 80 detailed categories into
12 broad object classes. The background class is ignored
during training and evaluation. This results in the COCO-
Thing dataset version, which we use for Overclustering and
Linear Segmentation (see Appendix 6.4).
ADE20K [69] ADE20K is a diverse dataset for semantic
segmentation, containing finely detailed labels across 150
unique semantic categories. These include "stuff" labels
such as sky and grass, as well as distinguishable objects like
people and cars. The dataset features a wide range of scenes,
with 20,210 images in the training set and 2,000 images in
the validation set, making it one of the most challenging and
diverse benchmarks for scene understanding. We use the full
dataset in our experiments while ignoring the others label.

7.2. Video Datasets
DAVIS17 [48] is a benchmark for video object segmenta-
tion, consisting of 150 videos, with 60 allocated for training,
30 for validation, and 60 for testing. Since ground-truth
foreground masks are only available for the first frames of
the test set, the validation set is used for evaluation. An
overview of dataset frames and annotations can be viewed

in Figure 11.
YTVOS [65] is another large-scale video object segmenta-
tion dataset, significantly larger than DAVIS17, comprising
4,453 videos annotated with 65 object categories. Similar to
DAVIS17, ground-truth masks are provided only for the first
frames of the test and validation sets. Therefore, a fixed 20%
subset of the training set is randomly sampled for evaluation;
further details are provided in the supplementary material.
Additionally, meta information is used to ensure that objects
belonging to the same category retain consistent class IDs
throughout the dataset, enabling semantic, category-level
assessments. Figure 9 illustrates the object distribution in
YTVOS while Figure 12 showcases example frames and
annotations.
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Figure 6. Hummingbird qualitative results for MoSiC on Pascal VOC. The first group of rows displays the images, the second shows the
corresponding per-image masks, and the third overlays the masks on the images, aligned by their semantic IDs. As shown, although MoSiC
is finetuned on YTVOS videos—which differ significantly in distribution from Pascal—it still produces accurate and precise semantic
segmentation maps, characterized by distinct IDs and tight boundaries.
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Figure 7. MoSiC overclustering visualizations on Pascal for K = 50. MoSiC not only localizes objects precisely but also identify them
with different cluster ids demonstrated by different colors. For instance, classes such as birds, motorcycles, dogs, cats, and cars are clearly
identifiable.
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Figure 8. Incorrect trajectories. The point tracks that start from
the beak of the bird and eventually track the bowl. This happens
due to the ambigious motion of the bird’s head.

Figure 9. The distribution of classes in YouTube-VOS. Some of the
more dominant classes are labeled. The image is taken from [50]
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Figure 10. Pascal VOC visualizations. The first group of rows displays the images, the second shows the corresponding per-image masks,
and the third overlays the masks on the images, aligned by their semantic IDs. These images and their ground truth segmentation maps are
used for our tasks, such as visual in-context learning and linear segmentation.
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Figure 11. DAVIS visualizations. The first group of rows displays the images, the second shows the corresponding per-image masks, and
the third overlays the masks on the images, aligned by their semantic IDs. These images and their ground truth segmentation maps are used
for our tasks.
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Figure 12. YouTube VOS visualizations. The first group of rows displays the images, the second shows the corresponding per-image masks,
and the third overlays the masks on the images, aligned by their semantic IDs. These images and their ground truth segmentation maps are
used for our tasks.
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