
Flow to the Mode: Mode-Seeking Diffusion Autoencoders

for State-of-the-Art Image Tokenization

Supplementary Material

A. Training setup and hyperparameters

A.1. Stage 1A ­ Tokenizer pre­training

All hyperparameters are given in Table 1. We found that

for FlowMo, using a relatively low commitment loss weight

relative to GAN-based tokenizers was beneficial. In fact,

bounding the commitment loss by applying a tanh activa-

tion prior to quantization degraded performance. We use to-

ken factorization following [11, 17], which enables a large

vocabulary size without excessive memory usage in the cal-

culation of the entropy loss.

Due to limited computational resources, we parameter-

ized all FlowMo models in µP and determined the optimal

losses, noise schedules, and other hyperparameters in the

exploratory “FlowMo (fewer params)” configuration, which

was trained on A100, H100, H200, L40S, or A6000 GPUs

as available. We then transfer these hyperparameters to the

larger and more FLOP-intensive FlowMo-Lo and FlowMo-

Hi configurations for final experiments. We train these final

configurations for relatively few epochs (130 and 80 respec-

tively) on a single 8×H100 node, and it is likely that further

training would continue to improve results.

A.2. Stage 1B ­ Tokenizer post­training

MaskBiT [15] noted the effectiveness of a ResNet-style

perceptual loss for tokenizer training, and that this loss

may have been used in prior work whose tokenizer train-

ing recipe was unknown [4]. However, we were unable

to use this network effectively in our loss Lpercep, instead

obtaining better results in Stage 1A with the LPIPS-VGG

network. Interestingly, [16] also applied a perceptual loss

based on LPIPS-VGG on the 1-step denoised prediction of

the network.

To verify the necessity of the post-training algorithm

we propose for FlowMo, we consider an alternative post-

training stage in which the ResNet perceptual loss is used

but on the 1-step denoised prediction as in Lperc. We sweep

a range of loss weights for this ResNet-based perceptual

loss in Table 2, using the FlowTok-small configuration. Im-

portantly, none are able to match the performance of Lsample

post-training.

During post-training, due to the computational expense,

we reduce the batch size to 64 and correspondingly re-

duce the learning rate to 5 × 10−5. In addition to gradient

checkpointing, we also use gradient accumulation in this

stage. We train Stage 1B for approximately 1 epoch for

both FlowMo-Lo and FlowMo-Hi, and apply early stopping

to counteract eventual reward hacking [1, 12].

We sample the timesteps to integrate the ODE for Lsample

randomly by taking u1, ..., un ∼ Unif(0, 1) and then setting

ti =
(

n
∑

j=i

uj

)

/
n
∑

j=1

uj

)

A.3. Stage 2 ­ Generative model training

To verify the quality of an image tokenizer, it is neces-

sary to ensure it can be used to train a high-quality gen-

erative model. As in tokenizer training, we lack resources

for matching the computational requirements of state-of-

the-art generative models which are trained for e.g., 1000-

1080 epochs with batch size 1024-2048 [15, 18]. We

use a MaskGiT configuration with hidden size 1024 and

28 layers, with 397M total parameters. training for 300

epochs with learning rate 10−4 and batch size 128. Both

[11] and FlowMo produce 256 tokens of size 18 bits,

which we convert to 512 tokens of size 9 bits for training

MaskGiT. We use guidance 1.5 for both models, and tune

the sampling temperature separately for each model to en-

sure fair comparison, since we find that models trained atop

OpenMagViT-V2 prefer lower temperature sampling, while

those trained atop FlowMo prefer high temperature. We use

64 sampling steps for both models with softmax tempera-

ture annealing and no guidance decay.

The purpose of our second stage training is to ensure

FlowMo can be used to train a second stage generative

model of comparable quality to one trained with a tradi-

tional tokenizer given the same computational resources.

Our goal is not to improve the state of the art for ImageNet-

1K generation at 256 resolution.

B. Evaluation setup and hyperparameters

For the FlowMo tokenizer, we use a guidance interval [9]

of (0.17, 1.02) in the EDM2 [7] convention (translating to

(0.145, 0.505) in terms of rectified flow noise levels), with

classifier-free guidance weight 1.5. For the second stage,

we also apply guidance, as is common practice, by shifting

the token logits according to the logit difference with and

without conditioning.

We did not observe negative interaction between use of

guidance in both the tokenizer and generative model; guid-

ance in both stages is helpful.

For all evaluation metrics (rFID, PSNR, etc.) reported

in the main paper, we use 50,000 samples unless otherwise

1



Hyperparameter FlowMo (fewer params) FlowMo-Lo FlowMo-Hi

Learning rate 0.0001 - -

Batch size 128 - -

Weight decay 0 - -

Num. epochs 40 130 80

λent 0.0025 - -

λcommit 0.000625 - -

λlpips 0.1 - -

Hidden size (µP width) 768 1152 1152

MLP ratio 4 - -

Encoder patch size 8 4 4

Decoder patch size 8 4 4

Encoder depth 8 - -

Decoder depth 16 - -

Latent sequence length 256 - -

Latent token size 18 18 56

Codebook size for entropy loss 9 9 14

Total number of parameters (×106) 517 945 945

Table 1. Training hyperparameters for tokenizer training. ‘-’ means hyperparameters are identical between FlowMo Small, A, and B

configurations

Loss type Loss weight rFID

Lsample 0.01 1.28

Lperc 0.05 2.57

Lperc 0.01 2.38

Lperc 0.005 2.16

Lperc 0.001 1.67

Lperc 0.0005 1.61

Lperc 0.0001 1.81

Lperc 0.00025 1.64

Lperc 0.0005 1.61

Lperc 0.00075 1.60

Table 2. Lsample ablation. We show the result of training with

Lsample in the first row. We then compare with Lperc at various

weights. We conduct two sweeps, first to find the optimal loss

weight order of magnitude (middle rows) and then to fine-tune the

loss weight (bottom rows). Regardless, it cannot match the perfor-

mance of Lsample Backpropagation through a complete sampling

chain is important.

noted. We compute the rFID and other reconstruction met-

rics in Stage 1 against the entire 50,000-example validation

set. Generative metrics such as gFID are computed against

the full ImageNet-1K training dataset statistics, as is stan-

dard practice. The generation results are evaluated using the

ADM codebase [5].

C. Additional Experiments

In this section, we provide some additional analyses and ex-

periments to better understand and illustrate the capabilities

of FlowMo.

C.1. Rate­distortion­perception tradeoff

It could be argued that the desired “mode-seeking” behav-

ior could be accomplished by simply increasing the sample

likelihood. Unfortunately, evaluating the sample likelihood

requires solving the log-determinant of the jacobian of the

flow field [10], making it impractical to optimize directly.

Neglecting the impact of this term we may increase or de-

crease the likelihood of x1 by modulating its norm, since

it is a centered isotropic gaussian (somewhat analogous to

truncation sampling in GANs [3]).

We attempt this analysis below. Whereas our pro-

posed shifted sampler and post-training strategy improve

both PSNR and rFID simultaneously, the naive sampling

strategy described above only allows us to trade off rFID

and PSNR against each other, constrained by the “rate-

distortion-perception tradeoff” [2]. Importantly, rFID and

PSNR cannot both be arbitrarily increased. See Figure 1 for

a quantitative study of this process. Where the x1 likelihood

is increased too high, the result is an eventual degradation

in the sample’s perceptual quality, while PSNR continues

to increase. Even if it were possible to maximize the sam-

ple likelihood, as noted in [14], directly maximizing sample

likelihood is inappropriate for image realism.

2



4 5 6 7 8 9 10 11 12
rFID (Perception)

21

22

23

24

PS
N

R
 (D

is
to

rt
io

n) FlowMo-Lo (Rate=0.07BPP)
FlowMo-Hi (Rate=0.22BPP)

Figure 1. Analysis of FlowMo with respect to the rate-distortion-perception tradeoff [2]. Varying x1 likelihood sweeps out different

rFID/PSNR curves at different rates. For this study, we use 5,000 samples for all metrics to make it computationally feasible.

C.2. Dataset and resolution generalization.

FlowMo-Lo is a diffusion autoencoder, so it naturally

generalizes to higher resolutions by employing a patch-

wise diffuse-and-blend strategy known in prior work [6].

FlowMo-Lo achieves strong performance on unseen data,

at 256 and 512 resolution, in terms of rFID, despite a lower

BPP and only training on ImageNet-1K at 256 × 256. In

Table 3, we compare with the Cosmos DI-8x8 tokenizer, a

generalizable tokenizer trained at multiple resolutions on a

large internet-scale dataset.

ImageNet-1K OpenImages Food-101

Resolution 256 512 256 512 256 512

Cosmos DI-8x8 0.87 0.39 0.85 0.52 1.05 0.94

FlowMo-Hi 0.55 0.30 0.69 0.40 1.39 0.68

Table 3. Multiple resolutions. FlowMo can perform encoding

and decoding at arbitrary resolutions following a patchwise diffu-

sion strategy known in prior work [6].

C.3. Tokenizer scaling.

FlowMo is a transformer-only architecture parameterized

in µP to facilitate easy scaling. We show in the table be-

low that, holding all else constant, all metrics improve every

time the width factor is increased. For this experiment we

train for 200K steps only. Other config settings are the same

as FlowMo (fewer params).

µP width # Params (×106) rFID ↓ PSNR ↑ LPIPS ↓

2 260 7.77 20.84 0.169

3 367 5.31 21.28 0.160

4 517 4.45 21.60 0.155

5 710 3.84 21.70 0.152

C.4. “Mode­seeking,” precision and recall

We illustrate the ‘mode-seeking’ effect of post-training be-

low. We compare the statistics of decompressed images to

reference dataset statistics via the Precision and Recall met-

rics [8]. When there is a 1:1 correspondence between the el-

ements of the conditioning dataset and the reference dataset,

post-training improves both precision and recall. This cor-

responds to reducing the diversity of the distribution p(x|c)
for each c by concentrating around its modes, which im-

proves fidelity to the original reference dataset.

By contrast, when comparing to the train set statistics

(i.e. an unrelated set of images not in 1:1 correspondence

with the conditioning dataset), post-training improves pre-

cision (quality) at the cost of recall (diversity).

vs. train stats. vs. val stats.

Model name Prec.↑ Rec.↑ Prec.↑ Rec.↑

FlowMo (fewer params) (no posttrain) 0.734 0.660 0.974 0.988

FlowMo (fewer params) 0.766 0.634 0.993 0.991

C.5. More results with post­training

The post-training scheme proposed generalizes to multi-

ple architectures, consistently improving their performance.

We have added more results extending Table 5 below, for

FlowMo (fewer params), which is defined in Table 1, and

FlowMo-Continuous, which is the version against which we

compare DiTo in Table 3.

Model name rFID ↓ PSNR ↑ LPIPS ↓

FlowMo (fewer params) (no post-train) 2.02 21.32 0.143

FlowMo (fewer params) 1.21 22.20 0.120

FlowMo-Continuous (no post-train) 0.74 25.65 0.064

FlowMo-Continuous 0.65 26.61 0.054

3



C.6. Wall clock times

We provide wall-clock times below. Note that FlowMo en-

coding is comparable to LlamaGen-32, so it does not bot-

tleneck second-stage generative modeling. The main slow-

down is due to a diffusion decoder, which we consider ac-

ceptable because it enables significantly better reconstruc-

tion. Decoding could be made faster (≈ 5× to 10×) via

distillation.

Model name Encode 1 image (s) Decode 1 image (s)

LlamaGen-32 0.021 0.038

FlowMo-B 0.050 2.391

FlowMo-B (small) 0.011 0.322

D. Extended visualization

We provide extended comparisons between our method and

various state-of-the-art tokenizers in Figures 2, 3, 4, 5 be-

low. Images are not cherry-picked.

4



References

[1] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and

Sergey Levine. Training diffusion models with reinforce-

ment learning. In International Conference on Learning

Representations (ICLR), 2024. 1

[2] Yochai Blau and Tomer Michaeli. Rethinking Lossy Com-

pression: The Rate-Distortion-Perception Tradeoff. In Pro-

ceedings of the 36th International Conference on Machine

Learning (ICML), 2019. 2, 3

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

Scale GAN Training for High Fidelity Natural Image Syn-

thesis. In International Conference on Learning Representa-

tions (ICLR), 2019. 2

[4] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and

William T. Freeman. MaskGIT: Masked Generative Image

Transformer. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2022. 1

[5] Prafulla Dhariwal and Alexander Nichol. Diffusion Mod-

els Beat GANs on Image Synthesis. In Advances in Neural

Information Processing Systems, 2021. 2

[6] Emiel Hoogeboom, Eirikur Agustsson, Fabian Mentzer,

Luca Versari, George Toderici, and Lucas Theis. High-

Fidelity Image Compression with Score-based Generative

Models. arXiv preprint arXiv:2305.18231, 2024. 3

[7] Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten,

Timo Aila, and Samuli Laine. Analyzing and Improving the

Training Dynamics of Diffusion Models. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2024. 1

[8] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko

Lehtinen, and Timo Aila. Improved Precision and Recall

Metric for Assessing Generative Models. In Advances in

Neural Information Processing Systems, 2019. 3

[9] Tuomas Kynkäänniemi, Miika Aittala, Tero Karras, Samuli

Laine, Timo Aila, and Jaakko Lehtinen. Applying Guid-

ance in a Limited Interval Improves Sample and Dis-

tribution Quality in Diffusion Models. arXiv preprint

arXiv:2404.07724, 2024. 1

[10] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maxi-

milian Nickel, and Matt Le. Flow Matching for Generative

Modeling. In International Conference on Learning Repre-

sentations (ICLR), 2023. 2

[11] Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin

Wang, and Ying Shan. Open-MAGVIT2: An Open-Source

Project Toward Democratizing Auto-regressive Visual Gen-

eration. arXiv preprint arXiv:2409.04410, 2025. 1, 6, 7

[12] Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and

Katerina Fragkiadaki. Aligning Text-to-Image Diffusion

Models with Reward Backpropagation. arXiv preprint

arXiv:2310.03739, 2023. 1

[13] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue

Peng, Ping Luo, and Zehuan Yuan. Autoregressive Model

Beats Diffusion: Llama for Scalable Image Generation.

arXiv preprint arXiv:2406.06525, 2024. 8, 9

[14] Lucas Theis. What makes an image realistic? arXiv preprint

arXiv:2403.04493, 2024. 2

[15] Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiao-

hui Shen, Daniel Cremers, and Liang-Chieh Chen. MaskBit:

Embedding-free Image Generation via Bit Tokens. arXiv

prepprint arXiv:2409.16211, 2024. 1

[16] Ruihan Yang and Stephan Mandt. Lossy Image Compres-

sion with Conditional Diffusion Models. In Advances in

Neural Information Processing Systems (NeurIPS). Curran

Associates, Inc., 2023. 1

[17] Lijun Yu, José Lezama, Nitesh B. Gundavarapu, Luca Ver-

sari, Kihyuk Sohn, David Minnen, Yong Cheng, Vigh-

nesh Birodkar, Agrim Gupta, Xiuye Gu, Alexander G.

Hauptmann, Boqing Gong, Ming-Hsuan Yang, Irfan Essa,

David A. Ross, and Lu Jiang. Language Model Beats Dif-

fusion – Tokenizer is Key to Visual Generation. In Inter-

national Conference on Learning Representations (ICLR),

2024. 1

[18] Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen,

Daniel Cremers, and Liang-Chieh Chen. An Image is Worth

32 Tokens for Reconstruction and Generation. Neural Infor-

mation Processing Systems (NeurIPS), 2024. 1

5



Original image Reconstructed Reconstructed

(OpenMagViT-V2 [11]) (FlowMo-A)

Figure 2. Tokenizer comparison.

6



Original image Reconstructed Reconstructed

(OpenMagViT-V2 [11]) (FlowMo-A)

Figure 3. Tokenizer comparison, continued.

7



Original image Reconstructed Reconstructed

(LlamaGen-32 [13]) (FlowMo-B)

Figure 4. Tokenizer comparison, continued.

8



Original image Reconstructed Reconstructed

(LlamaGen-32 [13]) (FlowMo-B)

Figure 5. Tokenizer comparison, continued.

9


	Training setup and hyperparameters
	Stage 1A - Tokenizer pre-training
	Stage 1B - Tokenizer post-training
	Stage 2 - Generative model training

	Evaluation setup and hyperparameters
	Additional Experiments
	Rate-distortion-perception tradeoff
	Dataset and resolution generalization.
	Tokenizer scaling.
	``Mode-seeking,'' precision and recall
	More results with post-training
	Wall clock times

	Extended visualization

