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7. Mathematical Preliminaries

This section contains additional mathematical background
needed for the algorithms in our paper.

7.1. Rotations

The set of all rotations in three dimensions is denoted as
SO(3), known as the “special orthogonal group.” Rotations
can be represented by 3× 3 matrices that preserve both dis-
tance (i.e., ∥Rx∥ = ∥x∥) and orientation (i.e., det(R) =
+1). If we represent points on the sphere as 3D unit vectors
x, a rotation can be applied using the matrix-vector product
Rx [20].

7.2. Rotation Between Two Vectors

To align one unit vector v2 with another unit vector v1, we
can use the Rodrigues rotation matrix formula:

R =


I, if v̂1 = v̂2

−I+ 2vvT , if v̂1 = −v̂2

I+V sin θ +V2(1− cos θ), otherwise
(6)

where:

v̂1 =
v1

∥v1∥
, v̂2 =

v2

∥v2∥
,v =

v̂2 × v̂1

∥v̂2 × v̂1∥
.

θ = arccos(v̂2 · v̂1),V =

 0 −vz vy
vz 0 −vx
−vy vx 0

 .

7.3. Axis Direction Angles

The axis direction angle of an S2-point around an axis is
defined as the angle between the point’s projection onto the
plane perpendicular to that axis and a reference axis. For ex-
ample, in Fig. 10, the S2-point P is projected onto the per-
pendicular planes, and the axis direction angles are shown
accordingly. Mathematically, these angles can be computed
using the atan2() function, as shown in Eq. (7). We set the
range of the angle to lie between 0◦ and 360◦.

θz = atan2(y, x)
θy = atan2(x, z)
θx = atan2(z, y)

 (7)
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Figure 10. Spherical Point (P) to Axis Direction Angles. Projec-
tions of point P onto the xy, zx, and yz planes are denoted as
Pxy , Pzx, and Pyz , respectively. (a) θz is the angle around the
z-axis from the x-direction to the projection vector

−−−→
OPxy . (b) θy

is the angle around the y-axis from the z-direction to the projec-
tion vector

−−−→
OPzx. (c) θx is the angle around the x-axis from the

y-direction to the projection vector
−−−→
OPyz .

7.4. Rotation Matrix from Axis-Angles

Given rotation angles θx, θy , and θz around the X-, Y -, and
Z-axes, respectively, we can compute the individual rota-
tion matrices as follows:

Rz(θz) =

cθz −sθz 0
sθz cθz 0
0 0 1

 , Ry(θy) =

 cθy 0 sθy
0 1 0
−sθy 0 cθy

 ,

Rx(θx) =

1 0 0
0 cθx −sθx
0 sθx cθx

 , [here c : cos(), s : sin()]

(8)
The combined rotation matrix R is then obtained by se-

quentially applying the rotations around each axis in the
ZYX order:

R = Rz(θz) ·Ry(θy) ·Rx(θx) (9)

8. Formal Justification of SPMC:

Centroid-based alignment is a classical strategy for esti-
mating temporal shifts in noisy 1D signals, with theoreti-
cal performance bounds established in [36]. Our method
is analogous to this idea in the spherical domain, where
the azimuthal shift—after mean alignment and projec-
tion—corresponds to a 1D phase shift. In the absence
of noise and outliers, aligning the mean directions of two
spherical point sets ensures that the residual difference lies
entirely in the azimuthal plane. A formal proof under this
condition is below.



Exact Recovery of SPMC (no noise or outliers)

Statement. Let B = RtrueA, where A,B ∈ S2 are
identical spherical point clouds and Rtrue ∈ SO(3).
Assume: (i) no noise or outliers, Then SPMC ex-
actly recovers:

Ropt = Rtrue.

Proof. Let ā and b̄ = Rtrueā be the mean directions
of A and B. Let RA, RB ∈ SO(3) be rotations such
that RAā = RBb̄ = [0, 0, 1]T . Then:
ANP = RAA, BNP = RBRtrueA = RresANP,

where Rres = RBRtrueR
−1
A fixes the north pole and

is therefore a z-axis rotation: Rres = Rz(θ). Az-
imuthal histogram correlation over ANP and BNP re-
covers s∗ = θ. The final estimate is:

Ropt = R−1
A Rz(s

∗)RB = Rtrue. ■

9. Experiment 1: Robust Alignment
9.1. Dataset Description
In the first experiment, we evaluate the robustness, accu-
racy, and time complexity of our algorithm using the “Ro-
bust Vector Alignment Dataset.” This dataset contains five
template spherical patterns, labeled A1, A2, A3, A4, and
A5. The patterns are simulated to represent various dis-
tributions: Pattern 1 (22212 points) represents a localized
simple trajectory, while Pattern 2 (9220 points) represents
a more complex trajectory, resembling sharp features ob-
served from objects like drones or other directional vector
observations. Patterns 3 (28218 points), 4 (26527 points),
and 5 (28557 points) represent spherical distributions cover-
ing the entire sphere, capturing characteristics such as ran-
dom small islands (Pattern 3), large islands (Pattern 4), and
non-uniform densities (Pattern 5).

To create the source sets, we add noise and outliers
across seven stages (B1-B7). In Stage 1, there is no noise
and are no outliers, meaning the source and template sets
contain the same number of points. In Stage 2, Gaussian
noise with a standard deviation of 0.01 is added, without
any outliers. In Stage 3, we retain the 0.01 Gaussian noise
and introduce random outliers by replacing 10% of the tem-
plate points. In Stages 4, 5, 6, and 7, we progressively in-
crease the proportion of template points replaced by random
outliers to 25%, 50%, 75%, and 90%, respectively, while
maintaining the same noise level as in Stages 1 and 2.

Unlike previous approaches that select a few specific ro-
tations [47], the complete set of source configurations in
our experiments is generated by sampling 100 random rota-
tions (R100) over the SO(3) space (shown in the bottom
right of Fig. 4 in the main text) and applying each rota-
tion to the source pattern. Thus, for each template pattern

(A1, . . . , A5), we create a total of 7 × 100 = 700 source
patterns. A sample configuration, such as A1B7R95, indi-
cates that the template pattern is A1, the source pattern is
B7 (which includes 90% outliers and Gaussian noise with
a standard deviation of 0.01), and the rotation applied is
labeled as rotation number 95. While Fig. 4 in the main
text displays the quantitative results of the simulation exper-
iments, Fig. 11 shows qualitative results of the SPMC+FRS
algorithm on several example configurations.

As discussed in Sec. 4 in the main text, our problem is
directly related to the “Robust Wahba Problem” [73]. In
their work, Heng Yang et al. developed QUASAR, which
achieved state-of-the-art results for the Wahba problem,
solving it under extreme outlier conditions (up to 95% out-
liers) when putative correspondences are provided. In con-
trast, our problem assumes no correspondences are given.
Therefore, in our first experiments, we compare the perfor-
mance of QUASAR with our algorithms. Since QUASAR
requires putative correspondences, we use FPFH [60] as a
prior step before applying QUASAR.

Source Pattern Template Pattern
Source and Template Patterns

 On Sphere 2D projection 2D projection On Sphere
Registration using (SPMC+FRS)

Config.
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Figure 11. Qualitative results of the SPMC+FRS algorithm on
“Robust Vector Alignment Dataset.” On the left, the 3D spherical
point cloud and 2D projection of the template pattern for each of
the five datasets are shown, along with one configuration of the
source pattern. On the right, the pattern is displayed after registra-
tion. The results demonstrate that the source pattern has success-
fully aligned with the template pattern. For configuration number,
Ai denotes the template pattern number, Bi denotes the source set
configuration, and Ri represents the rotation number.



9.2. Iteration Analysis:
In Fig. 12, we present the iteration analysis for the FRS
algorithm using the “Robust Vector Alignment Dataset.”
Across all datasets, including the subsets detailed in Sec. 5.1
in the main text, the algorithm converges in slightly more
than 10 iterations on average.
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Figure 12. Iteration analysis for the FRS algorithm

10. Experiment 2: Point Cloud Registration
10.1. Dataset Preparation
From the ModelNet40 dataset [72], we selected 166 ob-
jects from 35 object classes. We chose to exclude classes
containing highly symmetric objects, such as bowls, cones,
vases, bottles, and glass boxes. These objects exhibit sym-
metry across multiple directions, leading to rotational am-
biguity. Even if the algorithm registers these objects accu-
rately, rotational errors may still occur due to their indistin-
guishable orientations.

Complete-to-Complete (Comp2Comp) Dataset
Using the 3D CAD models, we first scaled each model to
fit within a unit cube of length 1, then sampled 5000 points
per object. We divided the source and target shapes based
on two primary criteria: a. No Correspondence (No corr.):
We selected 2500 points for the source and 2500 points
for the target, leaving no one-to-one correspondence. b.
10% Correspondence (10% corr.): In this case, we split
the dataset so that the source and target share 10% of the
points with absolute correspondence. We also created two
additional cases by adding Gaussian noise with a standard
deviation of 0.01 to each configuration. After creating the
basic dataset, we applied 10 random rotations and a fixed
translation of [0.1, 0.2, 0.3] to simulate the source.

Partial-to-Complete (Par2Comp) Dataset
For the Par2Comp dataset, we used the same source dataset

but selected 8 equidistant viewpoints across the SO(3)
space to cover the entire sphere. We discarded partial views
with ambiguous or highly symmetric content (e.g., one view
showing only a portion of an airplane wing where both
wings are symmetric). Out of 166 objects, we generated
a total of 881 partial views.

10.2. Centroid Aware Spherical Embedding
(CASE)

Different spherical projection techniques are discussed in
the literature, such as ray tracing from a 3D object from
a viewpoint [20] and spherical remeshing [58]. Centroid-
Aware Spherical Embedding (CASE) represents the spheri-
cal projection of a point cloud relative to its centroid. This
embedding is rotation- and scale-invariant and ensures that
all points reside on the unit sphere, making it effective for
tasks such as point cloud registration.

Centroid

Projection 

Point

(a) (b)

Figure 13. CASE Representation of Point Cloud. (a) Point cloud
(red) projected onto the unit sphere (green) from the centroid. (b)
CASE representation of the bunny point cloud from two different
viewpoints.

Point Cloud to CASE: Given a point cloud, let
(xc, yc, zc) denote its centroid, and consider a 3D point
(x1, y1, z1) in the cloud. The projection of this point onto
the unit sphere is computed as follows:
1. Compute the vector from the centroid to the point:

v⃗ =

x1 − xc

y1 − yc
z1 − zc


2. Normalize this vector to have a unit norm:

v⃗unit =
v⃗

∥v⃗∥
=

x1 − xc

y1 − yc
z1 − zc


√

(x1 − xc)2 + (y1 − yc)2 + (z1 − zc)2

3. The coordinates of the point projected onto the unit
sphere are: xy

z

 = v⃗unit



Fig. 13(a) illustrates a sample point cloud (red) and its
projection (green) onto the unit sphere from the centroid.
Fig. 13(b) depicts the bunny point cloud, highlighting its
original structure alongside its CASE representation from
two different viewpoints. Additionally, Fig. 14 demon-
strates the robustness of CASE, along with a qualitative
evaluation showcasing its invariance to rotation and trans-
lation, assuming the centroid is known.

10.3. Translation Estimation Algorithm
The translation estimation proceeds as follows:
• Voxel Assignment and Weighting: Each point in the

source and target clouds is assigned to a voxel grid, with
voxel size set to 0.2 units. Points are mapped to voxel
indices (i, j, k) by applying floor(p/voxel size) for each
coordinate p. A weight is assigned to each voxel, propor-
tional to the number of points it contains, yielding voxel
sets Vsource and Vtarget with respective weights.

• Translation Vector Voting: For each voxel pair (vi ∈
Vsource,uj ∈ Vtarget), a candidate translation vector tij =
(uj − vi) × voxel size is computed. The vote for each
candidate translation tij is weighted by the product of the
source and target voxel weights. The translation with the
highest accumulated weight across all candidate transla-
tions is selected as the coarse translation estimate.

• Fine Alignment with ICP: After coarse alignment, the
partial source and target clouds will be roughly aligned.
For N points in the partial source cloud, we select N
nearest neighbors from the target cloud and perform
translation-only ICP. This refinement iteratively adjusts
tfinal by minimizing residual distances between corre-
sponding points in the aligned source and target clouds.

10.4. Qualitative Results of Point Cloud Registra-
tion

Fig. 15 shows qualitative results of our point cloud registra-
tion algorithms compared to other works.

10.5. Point Cloud Registration on Real-World
Datasets

In Fig. 16, we evaluate our algorithm on the 3DMatch and
KITTI datasets. For 3DMatch, we select scans with an over-
lap of at least 65%. Our method is robust when the point
clouds have more than 65% overlap, as is the case for nearly
all subsequent scans in KITTI and for many scan pairs in
3DMatch. We exclude cases with less than 65% overlap, as
the method becomes unreliable in such scenarios. A failure
case is detailed in Sec. 10.6.

We summarize our results to those of other algorithms
(EGST [78] and GeDi [57]) in Table 1. EGST [78] appears
to be the current state-of-the-art algorithm for point cloud
registration, using learned geometric structure descriptors.
GeDi is a recent machine learning method that also uses

learned 3D descriptors and was recently state-of-the-art.
The results from these other algorithms were taken from
their respective papers.

Even though our algorithms were not originally in-
tended for point cloud registration, our CASE method with
Complete-to-Complete point clouds in Modelnet40 gives
a better result than EGST for the “No correlation and No
Noise” and “10% correlation and No Noise” cases. Our
EGI method gives comparable results to EGST on Mod-
elnet40 when there is Gaussian noise and for partial point
clouds. However, their algorithm is much more accurate on
the KITTI and 3DMatch datasets. The GeDi algorithm is
comparable to ours on KITTI and 3DMatch.

The EGST algorithm paper quotes an execution time of
0.012 s on the partial overlap data, as compared to 0.05 s
for ours (although they used a faster computer). The GeDi
algorithm is much slower than ours, since their algorithm
is slightly faster than FPFH, and ours is roughly 20x faster
than FPFH.

10.6. Failure Case
Fig. 17 shows an example of how our algorithm can fail
with point cloud registration if there is insufficient overlap
between the two point clouds. In the example, there is only
˜20% overlap; the algorithm works reliably if there is >65%
overlap.

11. Experiment 3: Rotation Estimation From
Spherical Images

While converting spherical images to spherical points (see
Sec. 5.3 in the main text), the choice of threshold value is
crucial. A lower threshold captures more features but in-
cludes more clutter, while a higher threshold captures fewer
features with reduced clutter. Fig. 18 illustrates the effects
of varying threshold values.

11.1. Qualitative Results
Fig. 19 shows all source spherical images and their 2D pro-
jections alongside the template spherical image and its 2D
projection for a sample rotation. The results after alignment
using our algorithm are also displayed, including a pixel-
wise difference map and a binary thresholded map (clutter
map) for each configuration.
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S(src) =  S(temp)
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S(src) =  4xS(temp)
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0.1 Noise
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(from Inputs)

After Registration
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CASE 
(after SPMC+FRS)
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Figure 14. Robustness and Invariance of CASE to Rotation, Translation, and Scale. The first column depicts the input point clouds, where
the source set is first scaled to fit into a unit cube. Isotropic Gaussian noise is added to the source set with a mean of 0 and a standard
deviation of 0.01 (third row) or 0.1 (fourth row). The second column visualizes the CASE directly derived from the input. The third column
shows the CASE after applying SPMC+FRS, and the final column presents the registration results in R3 space. The top row illustrates a
simple one-to-one case. The second row demonstrates a source set with 50% outliers and a scale four times that of the template. The third
row depicts a source set with the same scale as the template but includes 0.01 Gaussian noise and 90% added outliers. The bottom row
shows a source set with the same scale as the template, 0.1 Gaussian noise, and 90% added outliers.



Input Ground Truth ICP Teaser++ PCRNet PointNetLK RPM-Net SPMC+FRS(Ours) SPMC(Ours)

Figure 15. Qualitative results of point cloud registration for complete-to-complete (first row) and partial-to-complete (second row) cases
with different methods. These are: ICP [59], Teaser++ [75], PCRNet [62], PointNetLK [2], and RPM-Net [77]. For complete-to-complete
registration, we used two spherical embeddings: CASE in the SPMC method, and EGI in the SPMC+FRS method. For partial-to-complete
registration, only the EGI embedding was used in the SPMC+FRS method.
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Figure 16. Qualitative (left) and quantitative (right) results on the 3DMatch and KITTI datasets. Point clouds were voxel-downsampled
with a voxel size of 0.03. For KITTI, an additional preprocessing step was performed to remove ground reflection points by simply
removing the points with very low elevation.
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Figure 17. Example of point cloud registration where our algorithm fails. In this example, there is only around 20% overlap between the
two input point clouds, leading the algorithm to not work correctly.



Table 1. Rotation (E(R), [°]) and Translation (E(t), [cm]) Errors across different datasets and algorithms.

Dataset/Scenario Method E(R) [°] E(t) [cm]

Modelnet40: Complete-Complete
Unseen Objects EGST HA [78] 0.1803° 0.15
Unseen Categories EGST HA [78] 0.4554° 0.32
Gaussian Noise EGST HA [78] 1.1687° 0.96
Comp2Comp: No corr., No Noise Ours - CASE 0.029° 0.13
Comp2Comp: No corr., 0.01 Noise Ours - CASE 1.1° 0.8
Comp2Comp: 10% corr., No Noise Ours - CASE 0.001° 0.1
Comp2Comp: 10% corr., 0.01 Noise Ours - CASE 1.7° 0.8
Comp2Comp: No corr., No Noise Ours - EGI 1.3° 0.8
Comp2Comp: No corr., 0.01 Noise Ours - EGI 1.7° 0.8
Comp2Comp: 10% corr., No Noise Ours - EGI 1.6° 0.8
Comp2Comp: 10% corr., 0.01 Noise Ours - EGI 1.7° 0.8

Modelnet40: Partial-Partial
Partial-Partial EGST HA [78] 3.3040° 4.92
Part2Comp: No corr., No Noise Ours - EGI 3.2° 3.9
Part2Comp: No corr., 0.01 Noise Ours - EGI 3.0° 4.2
Part2Comp: 10% corr., No Noise Ours - EGI 2.3° 7.8
Part2Comp: 10% corr., 0.01 Noise Ours - EGI 3.0° 5.8

KITTI
KITTI EGST [78] 0.0168° 0.18
3DMatch (training)→ KITTI (testing) GeDi [57] 0.40° 8.21–10.34
KITTI (training)→ KITTI (testing) GeDi [57] 0.32–0.33° 7.22–7.55
KITTI Ours 0.42° 7.5

3DMatch
3DMatch EGST [78] 0.2086° 0.87
3DMatch Ours 3.0° 9.2

I = 0.1 I = 0.2 I = 0.3 I = 0.5
Figure 18. Effect of SphImg2SphPoints at different threshold intensities.
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Figure 19. Results of rotation estimation from spherical images. The top row displays the template spherical image and its 2D projection. In
the next six consecutive rows, source spherical images undergo varying levels of pixelwise difference (D%) or thresholded difference/clutter
(C%). For this case, the input rotations were XYZ Euler angles with α = 55.27◦, β = 12.11◦, and γ = 11.02◦. The estimated rotation
error using our algorithm is shown in the right columns.
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