
Global and Local Entailment Learning for Natural World Imagery

A. Proof for Lemma 1
Lemma 1 states that finer-grained concepts are progres-
sively projected: 1) away from the entailment root and
2) into smaller subregions in a transitivity-enforced entail-
ment. We begin with the definition of distance in an entail-
ment configuration:
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where ⟨·,·⟩ is an inner product between the embeddings.
The distance between two textual embeddings are computed
with respect to the entailment root. In an entailment con-
figuration with transitivity, the following property is satis-
fied [2] between a parent and its child:
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Simplifying the above equation, we get the following ex-
pressions:
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Case 1: Radial Geometry In radial geometry, all textual
embeddings lie on a unit hypersphere. As a result, the inner
product between any two embeddings can never exceed the
value of 1. As a result, we get the following expressions:
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As can be seen from equation 10, the cosine similarity be-
tween T i

j and T0 is always greater than that of T i
j+1 and T0.

This means the distance of T i
j+1 and T0 is always greater

than that of T i
j and T0.

Case 2: Euclidean Geometry In Euclidean geometry, the
entailment root is considered to be the origin (a vector of
zeros). This means T0 = 0. Textual embeddings in this
geometry are unnormalized and can have arbitrary norms.
The distance of textual embeddings in this geometry is sim-
ply the L-2 norm. Using equation 6, we get the following
expressions:
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In Euclidean geometry, the norms of the embeddings in-
crease with increasing ranks.

In both geometries, we can conclude that the distance of
textual embeddings monotonically increase with increasing
ranks. This leads to the following expression for the dis-
tance of an embedding from the root:
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where f is a monotonically increasing function with respect
to the rank j and r is the distance function. Now let, the
aperture angle of a cone defined at each textual embedding
have the following expression (as done in [2]):
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The above expression establishes the relation between the
aperture angle of a cone defined at some textual embedding
T i
j and its semantic granularity. From the expression, it

is evident that the aperture angle monotonically decreases
with increasing j which defines its semantic granularity.
Hence, we can conclude that fine-grained concepts are
progressively projected into smaller subregions.

The proof is complete.
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Kingdom # Samples Phylum Class Family Order Genus Species Average

Fungi 3410 68.09 38.24 31.40 23.78 63.84 73.05 49.73
Plantae 42710 92.17 37.01 15.82 30.35 66.34 74.45 52.69
Animalia 53880 84.73 72.86 73.40 55.68 68.25 70.41 70.89

Table 1. Zero-shot classification performance for each distinct kingdom class present in the iNaturalist-2021 dataset.

B. Implementation Details
All our models are based on the ViT-B/16 architecture and
use the OpenCLIP implementation in PyTorch. For train-
ing, we use a learning rate of 1e−7 with OneCycleLR sched-
uler and the Adam optimizer. We use a batch size of 32 and
accumulate gradient batches of 2. We use 2 NVIDIA H100
GPUs with the Distributed Data Parallel training strategy.
We train for a single epoch. We found training for larger
number of epochs hindered the performance of the model
especially in the fine-grained taxonomic ranks like genus
and species. We fixed the value of β to 0.1 and 1.0 for
the model trained from BioCLIP’s [4] and OpenCLIP’s [3]
checkpoints respectively. For our global entailment objec-
tive, we set the margin α to π/2.

C. Experimental Setup
Below we describe the details of the experiments done in
the main paper.

Ordering of taxonomic labels. We use the same setup
as Alper et al. [1]. We sample 50 equally spaced points
from the entailment root to the closest textual embedding to
a given query image in the embedding space. At each point,
we retrieve a textual embedding from a database which is
closest to the given image embedding. We define a radius
equivalent to the distance between the points for retriev-
ing relevant embeddings at each level. We compute the
Kendall’s Correlation Coefficient (τd) to evaluate the qual-
ity of ordinal association among the retrieved embeddings.
Similarly, we compute precision and recall metric relative
to the seven ranks of ground-truth taxonomic labels.

Zero-shot image classification. For each evaluation
dataset, we first create a database of unique textual embed-
dings for each rank of the taxonomy. For a given rank, we
compute the top-1 recall/accuracy metric on image to text
retrieval task. Unlike the ordering task, we compute the ac-
curacy metric for each taxonomic rank independently. From
the experiments, we notice that the performance of the mod-
els does not decrease monotonically with increasing ranks
of the taxonomy. In Table 1, we present kingdom-wise per-
formance of our model. We notice that classification per-
formance of plants especially in the family and order ranks
is abnormally low. We believe this is due to highly similar
traits and mislabeling of plant species in these ranks. Note

that in this experiment, we create independent database of
textual embeddings for each kingdom.

Image-to-image retrieval. In this experiment, we re-
trieve images of species with a given taxonomic label at a
given rank using a query image. For an evaluation dataset,
we precompute the embeddings for each of the images.
Subsequently, we retrieve images by calculating the cosine
similarity between the query image embedding and the pre-
computed image embeddings. We compute the recall metric
(R@1).

UMAP visualization. We show additional UMAP vi-
sualizations of textual embeddings from the models in Fig-
ure 1.

D. Additional Ablations
In Table 2, we show the performance of our global objective
function with varying margins (see equation 6 in the main
paper). We see that our objective function’s performance
improves with increasing margins.

α Kendall’s τd Precision Recall F1

π/2 0.991 0.162 0.467 0.241
π/4 0.990 0.152 0.467 0.229
π/8 0.990 0.154 0.470 0.232
0 0.990 0.151 0.454 0.226

Table 2. Hierarchical retrieval metrics on HierarCaps dataset with
varying margins (α) in our global entailment objective.

Additionally, we assess our model’s performance in the
ordering task by varying the number of retrieval steps in the
embedding space. Tables 3 and 4 present the results. Re-
ducing retrieval steps improves precision, but negatively af-
fects recall. The ordering performance remains consistent,
as expected.



Steps Kendall’s τd Precision Recall F1

10 0.993 0.527 0.472 0.498
20 0.993 0.491 0.552 0.520
30 0.993 0.493 0.618 0.548
40 0.993 0.455 0.568 0.505
50 0.993 0.458 0.572 0.508

Table 3. Hierarchical retrieval metrics on iNaturalist-2021 dataset with varying number of retrieval steps.

Steps Kendall’s τd Precision Recall F1

10 0.991 0.224 0.344 0.271
20 0.991 0.190 0.419 0.261
30 0.991 0.174 0.450 0.251
40 0.991 0.165 0.465 0.244
50 0.991 0.162 0.467 0.241

Table 4. Hierarchical retrieval metrics on HierarCaps dataset with varying number of retrieval steps.

Figure 1. UMAP Visualization of Textual Embeddings. The visualizations show our model has successfully imparted partial order in
the textual embeddings.
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