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A. Experimental Details
In this section, we provide details about the individual ex-
perimental setup and baselines, as well as the implementa-
tion details.

A.1. Anomaly Segmentation
For evaluating anomaly segmentation, we compare P2F
against several baselines based on M2F [12] and U3HS
[20] on the SMIYC [4] benchmark. The datasets used in-
clude SMIYC Road Anomaly [5], FS [3], and FS L&F [3].
All these benchmarks employ Cityscapes [14] as their in-
distribution data source. The Cityscapes dataset consists of
19 classes — 8 categorized as “things” and 11 as “stuff”
— captured from various cities across Germany. We em-
ploy the official SMIYC evaluation script with the addi-
tion of the FS dataset. Following the official evaluation,
void-labeled regions are ignored for computing results for
all three datasets. For FS L&F, only the region of interest,
typically the road in front of the vehicle, is evaluated. The
official metric requires an image-shaped array with anomaly
scores and dynamically selects the best-fitting threshold per
image. As avoiding prior knowledge is a fundamental as-
pect of our work, we primarily focus on metric-based base-
lines without OOD usage. Specifically, we employ the base-
lines RbA [41], EAM [22] and M2A [46] based on M2F
and implemented the general benchmarks SML [29] and
MM as mask variant of MSP [26] on M2F. While RbA re-
ports an OOD-free version, we use the OOD-free versions
of EAM and M2A presented in their ablation study. Fur-
ther, we use the prior knowledge-free U3HS [20], which is
based on DeeplabV3+ [9].

In contrast to how the respective papers evaluate these
methods, EAM, RbA, and M2A are trained on the panoptic
segmentation task, not on semantic segmentation. We use
the same ResNet50 (R50) [24] backbone architecture for all
methods to enable comparability between M2F-based ap-
proaches and U3HS. Additionally, EAM, RbA, and M2A
train on OOD data to supervise anomaly detection. We omit
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this to mitigate assumptions about OOD data to enable a fair
comparison of the uncertainty metric. Therefore, all pre-
sented M2F-based baselines are primarily post-processing
functions applied to the output of a standard M2F model.
For M2A, a global mask attention mechanism complements
the “local” mask attention during training and inference.

For SML, we apply the maximum logit standardization
to the logits L(x) of the M2F model introduced in Sec. 3:

L(x)c =

Nm∑
i=1

pi(c) ·mi[h,w], (12)

Let T be the set of all training images and let L(x)c ∈
RH×W be the pixel-wise logits of class c. We compute the
mean and standard deviation µ, σ ∈ RK of these maximum
logits over all classes:

µc =

MEAN({Lĉ(x)[h,w] | 1 ≤ h ≤ H, 1 ≤ w ≤ W,x ∈ Xtrain})
(13)

σc =

STD({Lĉ(x)[h,w] | 1 ≤ h ≤ H, 1 ≤ w ≤ W,x ∈ Xtrain})
(14)

where
ĉ(x) = arg max

c∈{1,...,K}
Lc(x)[h,w].

Hence,

USML[h,w] = −Lĉ[h,w]− µĉ

σĉ
.

To obtain the SML uncertainty USML[h,w] for a pixel at
position h,w of image x, we standardize the maximum logit
L
(x)
ĉ [h,w] using the mean and standard deviation computed

from all pixels [h,w] over all images x in the training set,
where the class ĉ has the greatest logit.

The Maximum Mask (MM) baseline presents a mask-
based variant of MSP [26]:

UMM[h,w] = − max
i∈{1,...,Nm}

mi[h,w].



For MSP [26], the maximum softmax probability of the cur-
rent pixel is taken as the confidence score, whereas for MM,
the maximum sigmoid probability over all masks serves as
the confidence score. The uncertainty estimates according
to EAM [22], RbA [41], and M2A [46] follow the corre-
sponding papers:

U (EAM)[h,w] = −
Nm∑
i=1

mi[h,w] ·
(

max
c=1,...,K

(pi(c)

)
,

(15)

U (RBA)[h,w] = −
K∑
c=1

tanh(Lc[h,w]), (16)

U (M2A)[h,w] =

(
1− max

c=1,...,K
Lc[h,w]

)
·RM [h,w],

(17)

where the sigmoid function is applied elements-wise and
RM is the mask filter as presented in M2A [46], such that
the uncertainty U (M2A)[h,w] is set to zero if there is no
mask for pixel [h,w] where the masks score mi[h,w] > 0.5
and the predicted class is “road” or a “thing” class and the
softmax confidence is greater than 0.95. We evaluate M2A
by only using the pixel-wise filter mi[h,w] > 0.5 since
all other models do not include class-specific information
for the detection of anomalies. Note that for the M2A un-
certainty, the logits are obtained from a model trained with
global mask attention.

Since the SMIYC metric expects one anomaly score per
pixel on a given image, the logical “and” between thresh-
olded distances and anomaly scores, as implemented by
U3HS [20], can not be used for the evaluation metric.
Hence, for U3HS, the Dirichlet strength from the semantic
head is used as an anomaly score.

A.2. Anomaly Instance Segmentation

The task of Anomaly Instance Segmentation is evaluated
using the official OoDIS benchmark code [43]. This bench-
mark assesses performance on three datasets: an unknown
split of L&F [44], as well as the test splits of the SMIYC
RoadAnomaly21 [5] and RoadObstacles21 [5]. The eval-
uation requires binary images containing the recognized
anomalies and a confidence score for each binary image.
An anomaly instance prediction with an Intersection over
Union (IoU) greater than 0.5 and the highest confidence
score is considered a positive prediction, contributing to the
true positive and false positive rates. All other predictions,
not counted as valid predictions for another anomaly, are
considered false positives.

For submission and evaluation on the publicly available
validation set containing only L&F [44] data, P2F, and
U3HS [20] are trained on the Cityscapes dataset.

A.3. Closed-World and Open-World Panoptic Seg-
mentation

Here, we detail the experimental setup for computing the
PQ and mIoU metrics on the two datasets COCO [35] and
BDD100k [65] for P2F and U3HS [20].

COCO: For the COCO [35] dataset, we preprocess the
data by excluding all images containing any of the 20%
(i.e., 16) least frequent classes in the training set, specifi-
cally: baseball bat, bear, fire hydrant, frisbee, hairdryer, hot
dog, keyboard, microwave, mouse, parking meter, refrig-
erator, scissors, snowboard, stop sign, toaster, and tooth-
brush, which aligns with [20, 63]. The images in the val-
idation set containing any held-out classes are placed into
a separate set, termed the open-world validation set, while
the remaining images form the closed-world validation set.
The semantic labels of the known classes are retained, while
the semantic labels of the held-out classes are merged into
a single OOD class. We then evaluate the mIoU and PQ
of the open-world validation set, treating all anomalies as
belonging to the OOD class. We use COCO panopticapi1

and torchmetrics2 for PQ and mIoU evaluation, respec-
tively. Following the training scheme presented in M2F [46]
for COCO, we employ a random resize crop augmentation
strategy during training, which maintains the aspect ratio
of the input images. During validation, we maintain the
original size of the COCO images. This approach differs
from the scheme used in U3HS, where images are resized
for both training and evaluation.

BDD100k: For the BDD100k [65] dataset, we follow the
evaluation and training procedure employed for COCO. For
the dataset split, we use the proposed class settings of BDD
anomaly [27] and exclude the classes motorcycle and bicy-
cle. In contrast to [27], we use the panoptic labels instead
of the semantic labels to enable a panoptic evaluation. Note
that besides the instance information, the panoptic labels
additionally have an increased number of classes compared
to the semantic labels, which increases complexity. We con-
struct the closed-world training and validation sets and the
open-world validation set similarly, but evaluate all scores
based on the respective torchmetrics implementation. We
restrict the evaluation of mIoU and PQ only on instances
that cover more than 2,500 pixels. This is because the depth
values in the dataset show significant variability, resulting in
many small anomalies that cover only a few pixels. Includ-
ing these small anomalies in the evaluation does not mean-
ingfully contribute to understanding the models’ ability to
recognize the held-out classes.

Cityscapes: For open and world segmentation, we fol-
low the setup described by [20] and use the standard train-
ing setup as suggested by M2F for all M2F-based baselines,

1https://github.com/COCOdataset/panopticapi
2https://lightning.ai/docs/torchmetrics/stable/
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including P2F. For U3HS [20], we use the setup described
in their paper and use the respective evaluation settings. For
the Lost & Found evaluation, we use a resized version as
done by [20] and a full-size version to maintain a fair eval-
uation.

A.4. Implementation Details
We train P2F and M2F on Cityscapes using a series of
augmentations. Specifically, we apply a random zoom
crop with a crop size of (1024, 512) and a zoom range of
(1.0, 2.0). Additionally, we utilize a color jitter augmenta-
tion with a brightness delta of 32, a hue delta of 18, con-
trast adjustments in the range of (0.5, 1.5), and saturation
changes within (0.5, 1.5). We also include a random hori-
zontal flip with a probability of 0.5. The color jittering is
necessary because we use the models trained on Cityscapes
for evaluation on SMIYC and Oodis. Without this augmen-
tation, different lighting conditions, especially of the sky,
could result in high anomaly scores.

We train the models with a batch size of 16, a learning
rate of 0.0001, and a learning rate of 0.00001 for the back-
bone, using the AdamW optimizer [38] with a weight de-
cay of 0.05. A polynomial learning rate scheduler with a
power of 0.9 is employed. Gradients are clipped at 0.01 ac-
cording to the L2 norm. The training is conducted for 450
epochs, which corresponds to approximately 90, 000 itera-
tions. Hence, we follow the training as suggested for M2F
[12] on Cityscapes, with the only difference of adding the
color jittering for the more robust uncertainty estimation.

For the COCO dataset, we employ a random zoom crop
that keeps the aspect ratio fixed with a zoom range of
(0.1, 2.0) and a crop size of (512, 512). No color jitter-
ing is used. The optimizer and scheduler configurations,
random horizontal flip, and gradient clipping remain the
same, but the batch size is increased to 32, and the train-
ing is performed over 50 epochs. In summary, we use a
training scheme closely matching the M2F [12] configura-
tion for COCO. However, we changed the crop size from
(1024, 1024) to (512, 512) and the batch size from 16 to 32
for known settings, which improved the convergence speed.

For the BDD dataset, M2F [12] does not provide a con-
figuration. Hence, we primarily follow the training on
Cityscapes as a related dataset. We scale the images within
the range of (1.0, 2.0) and crop both dimensions by half
to a size of (640, 360), similar to the cropping applied in
Cityscapes. No color jittering is used. All other parameters
are consistent with those used for Cityscapes.

Across all datasets, we train using a no-object loss coef-
ficient of 0.1, a class loss weight λcls = 2.0, a symmetric
dice loss weight λsDice = 5.0, and an evidential loss weight
λevi = 0.1 for P2F. The evidential loss weight is tuned to
ensure that the loss values of the symmetric dice and evi-
dential loss have similar absolute values. We use 200 object

queries for both the baselines and P2F, which is necessary
to generate a sufficient number of valid mask predictions
on the SMIYC Road Anomaly and SMIYC Road Obsta-
cle datasets. All other hyperparameters for model building
and training remain consistent with those used in the official
M2F repository 3.

For postprocessing the predictions of P2F, we set the
object-mask-threshold to 0.5, compared to 0.8 in the orig-
inal M2F model. This threshold on the mask prediction
probability determines if an object is present in the panoptic
prediction. However, since the beta prior predictions of P2F
are more restrictive, we choose a lower threshold value.

To create the anomaly instance segmentation, we intro-
duce a threshold t to the uncertainty estimates of P2F. The
corresponding feature vectors of the pixel embedding FE

are then clustered using DBSCAN [17] with parameters
eps and min-samples. The mask correspondence is deter-
mined using a scalar product between the predicted mask
features and the pixel embedding. Hence, it is natural to
use one minus the cosine similarity instead of an Euclidean
distance for the DBSCAN, as it is the normalized scalar
product of the two vectors. For the submission on OoDIS,
the uncertainty threshold t is set to 2 times the standard
deviation away from the mean uncertainty on the training
set t = −0.6 for the L&F split. The overall uncertainty
on SMIYC Road Anomaly and SMIYC Road Obstacle is
greater since the images cover uncommon scenarios and
conditions. Hence, we increase the threshold to 3.5 times
the standard deviation, i.e., t = −0.4. For COCO and BDD,
we follow the same approach of determining the threshold
and, therefore, set t = −0.55 and t = −0.6. The parameter
eps strongly influences the granularity of the clustering al-
gorithms. Evaluating the embedding space, we use 0.04 in
all experiments. Except for COCO, we set eps = 0.1 due
to the wider variety of semantic classes and instances. The
min-samples parameter is set to 17, however, clustering the
embedding is robust against changes in this parameter, with
values ranging from 10 to 23 being effective.

B. Additional Experiments
Besides the experiments provided in Sec. 5, we report ad-
ditional experiments on closed-world segmentation, open-
world semantics segmentation, the OoDIS validation set, as
well as a further ablation study of our uncertainty metric.

B.1. Closed World Segmentation
To compare P2F in closed-world segmentation, we compare
it to the vanilla M2F and a naive Dirichlet Prior network
(DPN) [39] for M2F for Cityscapes. We follow the train-
ing settings provided in [12] and use the Cityscapes [14]
script for evaluation. Besides the mIoU, we also report the

3https://github.com/facebookresearch/Mask2Former

https://github.com/facebookresearch/Mask2Former


Model mIoU ↑ cIoU ↑ PQ ↑ SQ ↑ RQ ↑

M2F 77.3 90.2 60.29 81.28 73.15

M2F DPN 64.5 88.4 50.29 67.20 61.70
P2F [ours] 77.0 89.1 59.41 80.74 72.34

Table 6. Comparison of M2F with different evidential heads on
Cityscapes on Panoptic Segmentation. Best evidential heads are
marked in bold.

BDD Anomaly COCO
Method Closed Open Closed Open

U3HS [20] 29.16 16.32 33.19 22.77
P2F [ours] 35.73 29.12 46.00 33.56

Table 7. Open- and closed-world semantic segmentation compari-
son using mIoU metric for BDD Anomaly on COCO.

Closed-W. Open-W.
Method PQ↑ SQ ↑ RQ↑ PQ ↑ SQ ↑ RQ↑
U3HS [20] 36.82 80.93 16.32 17.81 75.59 23.63
P2F [ours] 32.67 81.68 29.0 29.10 79.43 36.66

Table 8. Closed and open-world evaluation on the BDD100k
anomaly dataset [65].

category-wise IoU (cIoU). In Tab. 6, it can be seen that P2F
performs similarly to M2F. This contrasts with the massive
performance drop of the DPN head.

B.2. Open-World and Closed-World Segmentation
Besides the results reported on panoptic segmentation in
Sec. 5, we study open- and closed-world semantic segmen-
tation. In Tab. 7, we show the mIoU results for BDD100k
[65] anomaly and COCO [35] with the left-out classes listed
in Appendix A.3. Like in panoptic segmentation, P2F ranks
the highest in all settings.

In Tab. 8 we report the panoptic quality metric of U3HS
and P2F on BDD100k [65] anomaly dataset. U3HS shows a
strong closed-world performance in PQ and RQ. However,
P2F achieves the highest scores in the open-world setting as
well as for SQ in the closed-world setting.

B.3. Further Experiments on L&F
To further compare using the setting of unseen L&F data
as introduced by [20], we compare the reduced size evalu-
ation with the baselines reported by [20] and an M2F con-
fidence uncertainty. It can be seen that the additional base-
lines struggle with this task. The confidence baseline of
M2F shows a surprisingly strong performance.

In addition to the setting reported by [20], we report the
performance of P2F in comparison to other masked-based

Method Assumptions PQ ↑ SQ ↑ RQ ↑

EOPSN [28] data, void 0∗ 0∗ 0∗

OSIS [60] data, void 1.45 65.11 2.23
U3HS [20] none 7.94 64.24 12.37
M2A* [46] none 9.91 73.45 13.49
M2F* none 9.02 75.34 11.98
P2F [ours] none 11.22 74.47 15.06

Table 9. Results on the Lost&Found (unseen) dataset with the
settings of [20]. [28] and [60], are taken from [20]. * Uses P2F
postprocessing.

uncertainty methods in Tab. 10 using the full resolution of
the L&F dataset. We train M2A without OOD data. We
further report M2F using a classical confidence measure as
uncertainty, which diverges for this task. We also report the
uncertainty measures of RbA [41] and EAM [22]. These
results show that all these methods profit heavily from the
increased resolution. Nevertheless P2F maintains the high-
est scores for PQ and RQ.

Method PQ ↑ SQ ↑ RQ ↑

M2A [46] + P2F post-proc. 21.06 73.14 28.79
M2F 0.00 0.00 0.00
EAM [22] + P2F post-proc. 18.39 71.35 25.78
RbA [41] + P2F post-proc. 15.54 70.65 21.99
P2F [ours] 22.07 69.54 31.73

Table 10. Unseen L&F performance metrics on full-size resolu-
tion. Semantic approaches require P2F post-processing.

B.4. OoDIS Validation Set
In addition to the official OoDIS [43] benchmark scores,
we present results on the validation set of OoDIS compris-
ing 100 L&F [44] instance anomaly labels. We report the
scores for the OOD-free and extra-model-free U3HS and
P2F in Tab. 11. For U3HS, we experimented with 4 differ-
ent uncertainty thresholds and reported the best. The results
of both models are slightly better compared to the bench-
mark evaluation on a larger L&F, while their ranking re-
mains unchanged.

No Aux. No OOD
Backbone Model Models Data AP ↑ AP50 ↑
R50 U3HS [20] ✓ ✓ 0.61 2.04
R50 P2F [ours] ✓ ✓ 8.17 16.13

Table 11. Comparison of different Anomaly Segmentation Meth-
ods on the validation set of OoDIS.



Image P2F [Ours]U3HS

Figure 7. Open-World panoptic segmentation on L&F test set after training on Cityscapes [14].

B.5. Panic Open-Set Panoptic Segmentation

For additional evaluation of open-set panoptic segmenta-
tion, we utilized the novel PANIC benchmark [55]. The
benchmark contains images of different resolutions from
different cities in Germany and evaluates the PQ, SQ, and
RQ scores of open-set objects. In Tab. 12, we show the
official benchmark results of the open-set panoptic segmen-
tation task. It can be seen that P2F significantly leads the
benchmark introduced with the Con2Mav approach, with
P2F delivering nearly double scores on PQ and RQ.

Method PQ ↑ SQ ↑ RQ ↑

Con2Mav [55] 21.6 72.4 28.4
P2F [ours] 52.9 87.1 56.7

Table 12. Leaderboard of the PANIC [55] Open-set Panoptic Seg-
mentation benchmark. Results from the test set.

B.6. Uncertainty Ablation Study

In this section, we conduct further ablation studies in addi-
tion to the reported study in Sec. 5. In Tab. 13, we com-
pare the predictive uncertainty suggested by M2F [12] with
the uncertainty of P2F. It can be seen that the P2F uncer-
tainty is more effective on AP for the Road Anomaly split
of SMIYC and provides a major improvement in the FPR
of both datasets. This underlines the benefit of the evi-
dential mask selection in our uncertainty. Overall, our P2F
shows strong uncertainty statistics. Nevertheless, for minor
semantics shifts like L&F, the mask filtering seems to be
less important.

In Tab. 14, we compare our P2F uncertainty against three
further uncertainty variants for anomaly segmentation and
open-world panoptic segmentation. σ-unc. applies our
combined uncertainty concept with mask matching accord-
ing to Eq. (11a) with σ of the vanilla M2F model. Naive
Beta describes the vanilla evidential uncertainty according
to Eq. (6) and M2F* the vanilla M2F uncertainty with our
postprocessing. It can be seen that our combination concept



Image U3HS P2F [ours]

Figure 8. Visual comparison of anomaly instance segmentation on held-out classes on BDD [65], marked with a red box on the input
image (left). The high diversity and unbalanced class distribution seem to confuse the DPN-based U3HS [20]. Nonetheless, U3HS showed
a strong segmentation quality for the rare classes, like the traffic sign poles. P2F, managed to detect the unknown motorcycle or bicycles
more precisely, given its less class imbalance affected Beta’s prior approach.



Image U3HS P2F [ours] Image U3HS P2F [ours]

Figure 9. Visual comparison of anomaly instance segmentation on held-out classes on COCO [35], marked with a red box on the input
image (left). It can be seen that U3HS shows a strong performance for individual and larger objects, but can get confused with related
objects, like different kitchen objects in the top left. Additionally, it suppresses the combined uncertainty and distance approach uncertainty
at the object border. With the direct mask supervision and Beta prior P2F provides a more robust separation of different instances, while
improving the segmentation quality.

Road Anomaly FS L&F Obstacle
Method AP ↑ FPR95 ↓ AP ↑ FPR95 ↓
Prediction Uncertainty 48.6 62.2 61.2 88.4
P2F uncertainty [ours] 58.6 46.3 66.6 16.8

Table 13. Uncertainty comparison of P2F using the classical pre-
diction uncertainty and P2F uncertainty definition.

of mask selection and evidential uncertainty outperforms
our concept on M2F and the vanilla evidential uncertainty.

FS L&F Obstacle Panoptic L&F [19]
Method AP ↑ FPR95 ↓ PQ ↑ SQ ↑ RQ ↑
σ-unc. 22.78 27.04 6.17 78.06 7.91
naive Beta 12.81 23.04 0.94 62.94 1.50
M2F 48.60 62.20 9.02 75.34 11.98

P2F [ours] 66.58 16.84 11.22 74.47 15.06

Table 14. Uncertainty comparison of P2F with other naive uncer-
tainties.

In Tab. 15, we evaluate the influence of the individ-
ual components in Eq. (11d). We evaluate our mask part
p∗M (h,w) and classification part p∗C(h,w) compared with
our P2F uncertainty. It can be seen that the class part per-
forms for AP on large shifts from Cityscapes like SMIYC
Road Anomaly, but suffers from a high FPR and panoptic
detection of L&F. P2F outperforms both for Panoptic L&F
and shows the lowest FPR for Road Anomaly.

Road Anomaly Panoptic L&F [20]
Method AP ↑ FPR95 ↓ PQ ↑ SQ ↑ RQ ↑
mask part 52.02 62.96 4.89 76.43 6.40
class part 62.94 100.00 0.00 0.00 0.00

P2F [ours] 58.60 46.32 11.22 74.47 15.06

Table 15. Uncertainty comparison of P2F using the classical pre-
diction uncertainty and P2F uncertainty definition.



Image Alpha Beta
Figure 10. Mask Visualization of Alpha and Beta Masks on a single image from Cityscapes [14]. Alpha masks represent the positive
correspondence of a pixel to a mask, while Beta masks emphasize the negative correspondence.

C. Additional Qualitative Assessment:

C.1. Lost and Found

In Fig. 7 we show visual results of open-world panoptic seg-
mentation on the L&F test set. Anomaly predictions are
marked in brown. For all predictions, including the anomaly
prediction, different shades mark distinct instances. The

L&F dataset includes the obstacles on the road as anoma-
lies, but also other objects that have not been trained on dur-
ing training on Cityscapes. These include trash cans, pipes,
the back side of traffic signs, and pallets. For anomaly de-
tection, U3HS uses a double threshold strategy where both
the classification uncertainty and distances in the embed-
ding are thresholded. For anomaly detection, both predic-



tions need to surpass the individual thresholds. This can
lead to not detecting anomalies, as in the second and third
row of Fig. 7, but also results in less noise in the prediction.
Further, the L&F features uncommon textures of the street,
which results in confusion between sidewalk and road or
incorrectly detected anomalies, as visible in row one for
U3HS and in rows two and four for P2F.

C.2. Berkeley Deep Drive
We also provide further visual results of P2F and U3HS [20]
on the BDD [65] dataset in Fig. 8 and on the COCO [35]
Dataset in Fig. 9. Compared to Cityscapes, the BDD dataset
comprises a higher variety of classes and different scenar-
ios, making the anomaly instance segmentation task more
challenging. This is demonstrated by the increased false
positive rate of both models. Nonetheless, they are able to
detect anomalies reasonably well in this challenging envi-
ronment. However, the much smaller embedding dimension
of U3HS has difficulties in identifying unseen instances,
which results in cluttered predictions. This can be seen,
for example, in rows one and three in Fig. 8. While the ex-
plicit regularization of the embeddings prevents uncertainty
between instances, P2F might predict uncertainties between
the transition or regions. Improve the uncertainty instance
clustering to reject these remains for future work. Addition-
ally, given the high-class imbalance of the dataset, U3HS
tends to confuse rare classes with anomalies, for example,
the traffic sign pole in row three. In contrast, P2F clearly
detects the anomaly as its embeddings are high-dimensional
and because of its additional mask supervision signal. Ad-
ditionally, U3HS also marks the rider of the bicycles and
motorcycles as an anomaly, whereas P2F separates well-
visible humans, which is a natural phenomenon since hu-
man beings are present in the training set.

C.3. COCO
In comparison to BDD [65], the COCO [35] dataset fea-
tures less cluttered images but includes a greater variety of
classes. The total number of objects per image is lower,
and the objects themselves are generally larger. In this
setup, U3HS [65] and P2F perform well on simple im-
ages with only one anomaly as well as on more difficult
images with several objects and anomaly instances. The
distance thresholding of U3HS [20] and uncertainty thresh-
olding suppresses uncertainty estimates at the edge of two
classes. The pure uncertainty thresholding of P2F marks
them as an anomaly, as visible in row 2 in Fig. 9. P2F con-
sistently shows a superior object segmentation as well as
instance separation compared to U3HS [20]. This under-
lines the effectiveness of our proposed Beta prior and the
high quality of the embedding space learned by P2F.

C.4. Mask Visualization
In Appendix B.6, we visualize different prior masksααα andβββ
on a Cityscapes image. The first two rows show detections
of individual cars. Notably, the βββ-mask tends to suppress
other cars less strongly than it does objects from different
classes. This underlines the effective instance recognition
of P2F for common classes. Rows three and four depict
predictions for a human on a bicycle and the bicycle itself.
The last two rows correspond to “stuff” classes; these often
cover multiple instances within the same category, such as
the traffic lights in row five. Finally, the last row shows the
prediction for the street.
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mon Geisler, and Stephan Günnemann. Natural posterior
network: Deep bayesian uncertainty for exponential family
distributions. In Proceedings of the Internation Conference
on Machine Learning (ICML). PMLR, 2022. 2

[8] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for semantic
image segmentation. Arxiv, 1706.05587, 2017. 2

[9] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2018. 2, 6, 9

[10] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu,
Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen.
Panoptic-deeplab: A simple, strong, and fast baseline
for bottom-up panoptic segmentation. In Proceedings of
the IEEE/CVF Computer Vision and Pattern Recognition
(CVPR), 2020. 1, 2

[11] Bowen Cheng, Alexander G. Schwing, and Alexander Kir-
illov. Per-pixel classification is not all you need for semantic
segmentation. In Proceedings of Neural Information Pro-
cessing Systems (NeurIPS), 2021. 2, 3

[12] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceed-
ings of the IEEE/CVF Computer Vision and Pattern Recog-
nition (CVPR), 2022. 1, 2, 3, 5, 9, 11, 13

[13] Hyunjun Choi, Hawook Jeong, and Jin Young Choi. Bal-
anced energy regularization loss for out-of-distribution de-
tection. In Proceedings of the IEEE/CVF Computer Vision
and Pattern Recognition (CVPR), 2023. 3

[14] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 1, 8, 9, 11, 13, 16
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