Appendix

We provide additional qualitative and quantitative results
and discuss training and evaluation details.

A. Background
A.1. Diffusion Models

Diffusion Models (DMs) transform data to noise by learn-
ing to sequentially denoise their inputs z1 ~ N (0, o7) [18,
54, 55]. This approximates the reverse ODE to a stochas-
tic forward process which transforms the data distribu-
tion pyaa(zo) to an approximately Gaussian distribution
p(z;or) by adding i.i.d. Gaussian noise with sufficiently
large o7 and can be written as

dz = —o(t)o(t)V . log p(x; o(t))dt. (8)

DM training approximates the score function
V.logp(x;0(t)) with a neural network syp(z;c0) with
parameters 6. In practice, the network can be parameterized
as sg(z;0) = (Dy(z;0) — z)/0? and trained via denoising
score matching

E (e) o) (o) [Ao [1Da(z0 + 13 0,3) = 203
©))
where p(o,n) = p(c)N(n;0,0?), p(o) is a distribution
over noise levels o, A, : R™ — R is a weighting function,
and y is an arbitrary conditioning signal. We follow the
EDM-preconditioning framework [23] and use

D0 (Z; J) = Cskip(a)z + Cout(J)FQ (Cin(o—)z§ Cnoise(o))a

where Fy is the trained neural network and cgip, Couts Cins
and cyoise are scalar weights.

A.2. Gaussian Splatting

In their seminal work, Kerbl et al. [24] propose to rep-
resent a 3D scene as a set of scaled 3D Gaussian prim-
itives {G }_ | and render an image using volume splat-
ting. Each 3D Gaussian Gy, is parameterized by an opacity
ag € [0,1], color cg, a center (mean) pr € R**! and a
covariance matrix 3, € R3*3 defined in world space:

Gk(X) = efé(xfpk)ngl(x*Pk) (10)

In practice, the covariance matrix is calculated from a pre-
dicted scaling vector s € R® and a rotation matrix O €
R3*3 to constrain it to the space of valid covariance matri-
ces, 1.e.,
TOT
Y, = Opsis;, Oy, (1

The color cj, is parameterized with spherical harmonics
to model view-dependent effects. To render this 3D rep-
resentation from a given viewpoint with camera rotation

R € R*<3 and translation t € R3, the Gaussians {G}}
are first transformed into camera coordinates

p, =Rpy+t, X, =RXZRT (12)

and susequently projected to ray space using a local affine
transformation
K= JRSJE (13)

where the Jacobian matrix Jy, is an affine approximation to
the projective transformation defined by the center of the
3D Gaussian pj,. The Gaussians are projected onto a plane
by skipping the third row and column of X7, yielding the
2D covariance matrix Yap j, of the projected 2D Gaussian
Gap, k. The rendered color is obtained via alpha blending

according to the primitive’s depth order 1, ..., K:
K k—1
c(@) =Y crarGapi(z) [J(1 - a;Gap (). (14)
k=1 j=1

B. Implementation Details

Model architecture. Our epipolar transformer consists
of 2 attention blocks with 4 heads each. Similar to [5], it
samples 32 values per feature map on each pixel’s epipo-
lar line. As the transformer already operates on a low-
resolution latent space, we do not apply any spatial down-
sampling. The depth predictor consists of 2 linear layers
with ReLU and sigmoid activation that predict mean and
variance of the per-pixel disparity. The disparity is further
mapped to an opacity with 4 additional linear layers with
ReLU activation, followed by a sigmoid activation. In par-
allel, the remaining Gaussian parameters, i.e., scale, rota-
tion, color and feature values, as well as a per-pixel offset
are predicted with a linear layer from the feature maps pre-
dicted by the epipolar transformer. For efficiency, we use
a 32 channels for the feature values per Gaussian and omit
view-dependent effects, i.e., predict rgb values instead of
spherical harmonics.

The architecture of the 3D decoder consists of a 2D upsam-
pler and architecturally similar layers to the aforementioned
depth predictor and mapping to Gaussian parameters. The
2D upsampler consists of multiple blocks 2D convolutions
with replication padding and nearest neighbor upsampling,
resulting in a total of 1.5M parameters for the 3D decoder.

C. Baselines

PNVS We use the official implementation of the authors
https://github.com/YorkUCVIL/Photoconsistent-NVS. git
and the provided checkpoint on RealEstate10K.

MultiDiff We run code and a checkpoint for

RealEstate10K, both provided by the authors, using
our evaluation splits.

https://github.com/YorkUCVIL/Photoconsistent-NVS.git

CameraCtrl We use the official implementation of the

authors https://github.com/hehao13/CameraCtrl.git and the
provided checkpoint on RealEstate1OK. Since the original
implementation is trained to generate 14 frames, we pad the
camera trajectory by duplicating frames and subsequently
subsampling the generated images.

ViewCrafter We use the official evaluation scripts

provided by the authors https://github.com/Drexubery/
ViewCrafter.git. Since the original implementation is
trained to generate 25 frames, we pad the camera trajectory
by duplicating frames and subsequently subsampling the
generated images.

PixelSplat We run the official RealEstatelOK-

checkpoint and inference implementation https :
/] github. com/dcharatan/ pixelsplat. git using our evalu-
ation splits. We remark that the results on our evaluation
split are lower than the originally reported numbers in [5]
on the full testset. Since evaluating generative methods
on such a large quantity of scenes is computationally
expensive and slow, we decided to only report numbers
on 128 randomly sampled scenes from the testset, follow-
ing [68]. We verified that we obtain the originally reported
performance when using their original evaluation split to
ensure we run the method correctly and note that another
work also measured lower performance for PixelSplat on a
slightly different evaluation split [69].

LatentSplat We evaluate the official checkpoint on

RealEstate10K using the official inference implementation
https://github.com/Chrixtar/latentsplat.git together with our
evaluation splits.

4DiM While we designed our evaluation setting for

RealEstate 10K approximately similar to 4DiM [68], a
quantitative comparison is difficult because no official
code or evaluation splits are available. We observe that
reconstruction quality on RealEstatel0K can vary signif-
icantly between scenes, as indicated by a large standard
deviation for both reconstruction metrics: 19.2 + 4.2 for
PSNR and 0.277 £ 0.113 for LPIPS in our single-view
setting with 128 randomly sampled scenes. For reference,
4DiM reports a PSNR of 18.09 and LPIPS of 0.263 for
their best model. We also measure a slightly lower TSED
when using ground truth data: 0.993 whereas 4DiM obtains
1.000 on their evaluation split. Note that a TSED below
1.0 can indeed happen on ground truth data, as poses in
the data are noisy and do not achieve a perfect score [68].
Considering the results for our approach 0.992(0.993) and
0.997(1.000) for 4DiM, both methods saturate the metric
wrt. the corresponding evaluation split. Lastly, we remark
that FID and FVD depend strongly on the number of real
samples that were used for comparison, as well as any
preprocessing of the data. 4DiM does not provide these

evaluation details and their numbers for FID and FVD are
not directly comparable with our results.

D. Experimental Setting
D.1. ScanNet++

The camera trajectories for ScanNet++ follow a scan-
pattern and viewpoints often change rapidly with large cam-
era motion. When evaluating our method, we hence ensure
that the sampled target views have an average overlap of at
least 50% with the reference views. Specifically, we sample
one or two reference views randomly and then compute the
overlap for each view in the scene with the reference views
using the provided ground truth depth. The overlap score of
each view is computed as the average score over all refer-
ence frames. We select the views with the largest overlap as
target views and discard cases in which any of the selected
target views has less than 50% average overlap.

D.2. Metrics

For FID, we take all generated views and compare their dis-
tribution to the same number of views for 20K scenes of
the training set for RealEstate10K and 171 scenes for Scan-
Net++. For FVD, we use all generated views and the same
number of views from 2048 RealEstate1 0K scenes and 171
scenes from ScanNet++. Since the feature extractor for
FVD requires a minimum number of 9 frames, we use re-
flection padding to pad real and generated sequences.

We use a guidance scale of 2.0 for all our results.

E. Additional Results

E.1. Teaser Images

The images in Fig. 1 of the main paper show the gener-
ated splats with a subsequent per-scene optimization, run-
ning the default Splatfacto method of [59] with 5,000 iter-
ations. To encourage a fewer splats, we initialize the scale
based on the average distance to the three nearest neigh-
bors instead of directly using the predicted scale. We also
visualize the generated splats in feature space, i.e., the 3D
representation generated by our model. Since the features
are high-dimensional, we show the first three principal com-
ponents of feature space. We use the same visualization for
the images shown in this appendix.

E.2. Additional Quantitative Results

We provide additional quantitative results for 3D scene syn-
thesis using two reference images in Table 5. We further
conduct an additional ablations study, for which we only
train a 3D decoder on top of a frozen diffusion model, i.e.,
Ours-No3D. As shown in Table 6, this approach consis-
tently performs worse than GGS and GGS with 3D decoder,

https://github.com/hehao13/CameraCtrl.git
https://github.com/Drexubery/ViewCrafter.git
https://github.com/Drexubery/ViewCrafter.git
https://github.com/dcharatan/pixelsplat.git
https://github.com/dcharatan/pixelsplat.git
https://github.com/Chrixtar/latentsplat.git

RE10K ScanNet++
FID| FVD] FID| FVD|

ViewCrafter 70.8 784.6 119.8 553.3
Ours-No3D 57.4 678.7 149.2 635.5
GGS (Ours)+depth 57.4 440.6 127.6 523.8

GGS (Ours)+depth+FT 47.6 468.4 119.3 513.7

Table 5. 3D Scene Synthesis: We report FID and FVD for
rendered views between the training images at image resolution
576x320 pixels.

Interpolation Extrapolation

PSNRt1 LPIPS| TSEDt FID| FVD| TSED?T

GGS 22.5 0.214 0.977 51.3 317.0 0.972
No Ly r 19.6 0.294 0.868 65.8 320.8 0.865
No f,, xzg-prediction 14.9 0.611 0.753 239.4 1131.6 0.821
GGS +depth 23.0 0.204 0.973 51.0 336.3 0.963
fe: Discrete ¢ 22.0 0.211 0.960 53.7 3489 0.956
D3 p: convolutional 21.2 0.287 0.995 66.9 317.9 0.990
D3 p: transformer 21.3 0.342 0.996 92.2 343.5 0.990

Dsp: frozen backbone 19.5 0.312 0.942 70.1 320.7 0.934

Table 6. Ablation Studies: We investigate the effectiveness of our
design choices on RealEstate 10K using two reference images.

Figure 7. View extrapolation: Left: GGS can extrapolate the
input view, e.g. the fridge. Right: Failure case for challenging
transparent ob‘e;ct close to the camera.

!

Figure 8. Long-Range Autoregressive Synthesis Generated
views of GGS between the 12 reference images.

corroborating our design choice to include the 3D represen-
tation directly in the diffusion model to synthesize consis-
tent results.

E.3. Additional Qualitative Results

We show additional baseline comparisons for synthesis
from a single view and two views in Fig. 9 and Fig. 10,
respectively. We showcase additional view extrapolations
in Fig. 7, where for the first example the fridge on the left
side is generated, and one failure case on the right, a broken
glass vase. Fig. 11 provides more generated 3D scenes from
a single image, using our GGS model and Fig. 12 depicts
additional comparisons to ViewCrafter [76] for 3D scene
synthesis. Lastly, we include more autoregressive scene
synthesis results in Fig. 13 and Fig. 8. We extend the au-
toregressive synthesis to 12 views in Fig. 8 and find that
GGS still performs well in this setting. For more views,
since GGS generates per-pixel splats, the number of splats
becomes computationally too expensive. A possible solu-
tion would be to include intermediate pruning steps to re-
duce the number of total splats.

Reference Image CameraCtrl ViewCrafter Ours-No3D GGS(Ours) Ground Truth

i

RealEstatel0K

ScanNet++

Figure 9. Baseline Comparison Given One Reference Image: We show results for the strongest baselines CameraCtrl [15] and
ViewCrafter[76] together with our approach without (Ours-No3D) and with 3D representation (GGS). Best viewed zoomed in.

R,eference.lmage LatentSplat ViewCrafter Ours-No3D Ground Truth

GGS(Ours)

RealEstatel0K

ScanNet++

Figure 10. Baseline Comparison For View Extrapolation Given Two Reference Images: We show results for the strongest baselines
LatentSplat [69] and ViewCrafter[76] together with our approach without (Ours-No3D) and with 3D representation (GGS). As both refer-
ence views are close together, we only include one image for reference. Best viewed zoomed in.

Reference Image

Generated Feature Splats

3D Scene

Reference Image

Generated Feature Splats

3D Scene

Figure 11. 3D Scene From a Single Image: . We show generated Gaussian splats in image and feature space and the reference image.

ViewCrafter GGS(Ours)

RealEstatel0K

ScanNet++

Figure 12. 3D Reconstruction Results From Generated Images: We run an off-the-shelf 3DGS optimization on the generated multi-
view images of ViewCrafter and GGS (Ours). For ViewCrafter, we use 15,000 optimization steps. For our approach, we only refine the

generated splats with the generated multi-view images, using 5,000 iterations. The resulting 3D representation is shown on the left and two
rendered views from novel viewpoints are included on the right.

Lo [. MR

ST
= ﬂj
‘ ‘ — | 1.4

3D Scene

3D Scene

- .’:

Figure 13. Autoregressive Scene Synthesis with GGS: By generating consistent views between the reference images and from additional
viewpoints, GGS can augment the set of 5 reference images and generate larger 3D scenes autoregressively.

