
MOBIUS: Big-to-Mobile Universal Instance Segmentation via
Multi-modal Bottleneck Fusion and Calibrated Decoder Pruning

Supplementary Material

We here report additional implementation details (Sec. 6)
and state-of-the-art comparison on additional datasets
(Sec. 7). Moreover, we extend our ablation study and in-
clude analysis on the component-wise efficiency (Sec. 8.1),
the different mobile encoders and the relative computational
complexity of our decoders (Sec. 8.2), the FLOPs at low im-
age resolution (Sec. 8.3), decoder design choices (Sec. 8.4),
the effect of calibration on decoder pruning (Sec. 8.5), and
different confidence trajectory functions (Sec. 8.6). Finally,
we provide qualitative results for the different tasks sup-
ported by our foundational universal instance segmentation
model (Sec. 9).

6. Implementation Details
Datasets. In Sec. 4.1, we have described the datasets that
we used for training our model. We here report additional
details in table Tab. 5. Notice that, unlike GLEE [58], MO-
BIUS is trained in a single stage across all listed datasets.
The table also reports the sampling ratio for each dataset.
Following GLEE, to ensure that objects from SA1B are at
the object-level rather than the part-level, we apply mask
IoU based NMS and use area as NMS score to eliminate
part-level object annotations.

Additional Training Details. To ensure full reproducibil-
ity of our approach, we here report additional training de-
tails to the ones reported in Sec. 4.1. In particular, we train
our model for 500,000 iterations on the joint set of datasets
listed in Tab. 5. We use the AdamW [33] optimizer with
learning rate 10−4 and weight decay of 0.05. We decay the
learning rate twice by a factor of 0.1 after 400k and 500k
iterations respectively. The learning rates of the image en-
coder and text encoder are multiplied by a factor of 0.1. We
use multi-scale augmentation, and resize the input images
such that the shortest side is at least 384 and at most 800
pixels while the longest at most 1333.

7. Additional State-of-the-art Comparisons
Low-resolution evaluation. For completeness, we pro-
vide the low-resolution performance of our big models
(Tab. 6), so that they can be fairly compared to our mo-
bile models in Tab. 1. This analysis further demonstrate
the adaptability of MOBIUS models. At 89G FLOPs,
MOBIUS-3 (low-res) achieves a COCO-val APb of 50.1
and LVIS APb of 40.1, with a modest performance drop
compared to its high-resolution counterpart (COCO-val
APb of 57.8 and LVIS APb of 50.3 at 456G FLOPs).

Sizes Annotations Sampling
Ratiodataset images objects semantic box mask

Detection Data
Objects365 [49] 1817287 26563198 category ✓ - 1.5
OpenImages [20] 1743042 14610091 category ✓ - 1.5
LVIS [12] 100170 1270141 category ✓ ✓ 1.5
COCO [30] 118287 860001 category ✓ ✓ 1.5
BDD [47] 69863 1274792 category ✓ ✓ 0.15
Grounding Data
RefCOCO [37] 16994 42404 description ✓ ✓

2.5†RefCOCOg [37] 21899 42226 description ✓ ✓
RefCOCO+ [37] 16992 42278 description ✓ ✓
VisualGenome [19] 77396 3596689 description ✓ - 2
OpenWorld Data
UVO [56] 16923 157624 - ✓ ✓ 0.2
SA1B [17] 2147712‡ 99427126 - ✓ ✓ 2.5
Video Data
YTVIS19 [64] 61845 97110 category ✓ ✓ 0.3
YTVIS21 [64] 90160 175384 category ✓ ✓ 0.3
OVIS [38] 42149 206092 category ✓ ✓ 0.3
RefVOS [48] 93857 159961 description ✓ ✓ 0.3

Table 5. Training Datasets. The datasets used to train MOBIUS
and the corresponding sampling ratio. We here process each frame
in video datasets independently. †: sampling ratio of the joint set
including all RefCOCO datasets; ‡: we train on a subset of 500k
images from the SA1B dataset.

Method FLOPs
(G)

Generic Detection & Segmentation Zero-shot

COCO-val LVIS ODinW

APbox APmask APbox APr
box APmask APr

mask APbox

L
ow

-r
es

GLEE-Lite [58] 59 47.2 42.1 35.0 31.9 31.2 23.0 40.5
MOBIUS-3 89 50.1 45.4 40.1 36.8 37.3 34.7 40.5
MOBIUS-2 53 48.7 43.4 36.1 31.1 33.8 29.8 39.1

MOBIUS-1 41 47.4 42.3 35.2 32.6 32.8 32.4 40.5
MOBIUS-0 33 46.2 41.5 33.7 28.0 31.4 27.3 43.8

Table 6. Comparison of big models at low-res. We com-
pare MOBIUS to GLEE [59] on object-level image tasks at low-
resolution, rescaling the images to 384 on their short side while
preserving aspect ratio. The models are ranked by descending
FLOPs and divided into groups with similar FLOPs count. FLOPs
are computed at 384x384 resolution, omitting the text encoder.

Lower-tier models, such as MOBIUS-0 (low-res), operate
at just 33G FLOPs while maintaining competitive perfor-
mance (COCO-val APb of 46.2). Nevertheless, the small-
est big model still requires almost twice as many FLOPs
as our mobile model based on MNv4-conv-M (Tab. 1, d).
These results highlight the suitability of MOBIUS models
for resource-constrained platforms, such as mobile and edge
devices.

RefCOCO - Referring Object Detection and Segmenta-
tion. We report a state-of-the-art comparison on the Re-
fCOCO, RefCOCO+ and RefCOCOg datasets in Tab. 7.
For each dataset, we report the P@0.5 and the oIoU. We



Method RefCOCO RefCOCO+ RefCOCOg

P@0.5 oIoU P@0.5 oIoU P@0.5 oIoU

Specialist
MDETR [16] 87.5 - 81.1 - 83.4 -
SeqTR [75] 87.0 71.7 78.7 63.0 82.7 64.7
PolyFormer (L) [31] 90.4 76.9 85.0 72.2 85.8 71.2

Generalist

UniTAB (B) [65] 88.6 - 81.0 - 84.6 -
OFA (L) [55] 90.1 - 85.8 - 85.9 -
UNINEXT (L) [28] 91.4 80.3 83.1 70.0 86.9 73.4
UNINEXT (H) [28] 92.6 82.2 85.2 72.5 88.7 74.7

Foundation GLEE-Plus [58] 90.6 79.5 81.6 68.3 85.0 70.6

GLEE-Lite [58] 88.5 77.4 78.3 64.8 82.9 68.8
MOBIUS-3 87.5 75.6 77.2 63.1 80.4 65.6
MOBIUS-2 86.1 73.6 75.7 61.0 79.2 63.5

MOBIUS-1 85.8 73.2 73.1 59.0 77.4 62.1
MOBIUS-0 85.1 71.9 73.4 58.5 77.4 61.5
MOBIUS-R50 86.6 74.3 76.0 61.5 79.5 64.2

Table 7. Comparison of methods on RefCOCO, RefCOCO+, and
RefCOCOg datasets.

find that, despite the decreased number of FLOPs, our
model remains effective in grounding referring expressions.
However, we want to highlight that, while switching from
ResNet-50 to FasterViT variants allowed us to leverage a
more edge-friendly architecture, it seems that FasterViT
provides a worse initialization for the referring tasks. We
indeed report the performance of a MOBIUS variant trained
with R50 and find that, despite having a number of FLOPs
comparable to MOBIUS-0, it achieves much higher refer-
ring performance. We hope that this insight will guide fu-
ture researchers towards choosing more suitable vision en-
coder initializations for referring and grounding.

ODinW - Zero-shot Object Detection. We report a state-
of-the-art comparison on 13 ODinW [26] datasets in Tab. 9,
benchmarking the zero-shot generalization of our models
for the object detection task. We find that our model re-
mains competitive with GLEE-Lite while achieving better
efficiency, with MOBIUS-3 even outperforming GLEE-Lite
(44.0 vs 43.2 average box AP)

SegInW - Zero-shot Instance Segmentation. We report
a state-of-the-art comparison on 22 SegInW [79] datasets
in Tab. 8, benchmarking the zero-shot generalization of our
models for the instance segmentation task. Remarkably, we
find that our model outperforms all prior methods (43.9 av-
erage mask AP) already in its smallest size MOBIUS-0.

8. Additional Ablation Studies
8.1. Component-wise Efficiency Analysis
In Tab. 10, we report the component-wise numerical FLOPs
values used to generate Fig. 2.

8.2. Mobile Encoders
We show in Tab. 11 that further downscaling can be allowed
by switching the vision encoder from FasterViT [13] to Mo-

bileNetv4 [39]. While FasterViT has been optimized for
performance / throughput trade-off on high-end and edge
GPUs, different versions of MobileNetv4 have also been
optimized for performance / throughput trade-off on dif-
ferent mobile devices. As can be seen from our compari-
son, MobileNetv4 variants require significantly less FLOPs.
Nevertheless, despite the larger FLOPs count, FasterViT re-
tains good latency and provides significantly better detec-
tion performance. For this reason, we prefer leveraging the
efficient FasterViT in our experiments in the main paper so
to fairly compete with GLEE-Lite. Nevertheless, the results
in Tab. 11 show that further downscaling of our model can
be enabled by using one of the MobileNetv4 architectures,
trading off performance for less compute requirements.

8.3. Low-resolution FLOPs

In Tab. 12 we compare the FLOPs requirements of differ-
ent MOBIUS variants and GLEE under the low-resolution
setting, where images are rescaled to 384 on their short side
while preserving aspect ratio. The results show that the
computational complexity of our pixel decoder and trans-
former scales down nicely with the input image size, still
resulting in less FLOPs than the corresponding vision en-
coders (except for MOBIUS-0). Moreover, even at smaller
resolution, using our bottleneck encoder as pixel decoder
results in only 41% of GLEE’s pixel decoder FLOPs. Fi-
nally, thanks to our single-scale processing, our transformer
decoder only takes 50% on GLEE’s.

8.4. Decoder Design

In Tab. 13 we ablate on different design choices for our
pixel decoder. In particular, we ablate on the COCO dataset
on the effect on FLOPs and performance of: type of self-
attention used, bottleneck size, number of pixel decoder lay-
ers, whether to use single or multiple scales in the trans-
former decoder. We find that: (i) deformable self-attention
- enabled by our smart design of the bottleneck representa-
tion as an individual scale from the feature scale pyramid
- achieves the same performance as standard self-attention
but with a significantly lower FLOPs count; (ii) the bottle-
neck size, measured according to the feature stride selected,
saturates at stride 16, with the smaller stride 32 resulting
in lower performance but better efficiency; (iii) the perfor-
mance can greatly vary based on the number of pixel de-
coder layers, and we thus advise practitioners to choose the
number of layers based on their computational budget; (iv)
thanks to the multi-modal and multi-scale fusion happening
within our pixel decoder, leveraging a single scale or multi-
ple scales in the transformer decoder does not result in a sig-
nificant difference, and we thus advise to use a single scale
to improve efficiency.



Method B
ra

in
Tu

m
or

C
hi

ck
en

C
ow

s

E
le

ct
ri

c
Sh

av
er

E
le

ph
an

ts

Fr
ui

ts

G
ar

ba
ge

G
in

ge
rG

ar
lic

H
an

d

H
an

d
M

et
al

H
ou

se
H

ol
d

It
em

s

N
ut

te
rfl

yS
qu

ir
re

l

Ph
on

es

Po
le

s

Pu
pp

ie
s

R
ai

l

Sa
lm

on
Fi

lle
t

St
ra

w
be

rr
y

Ta
bl

et
s

To
ol

ki
ts

Tr
as

h

W
at

er
m

el
on

Avg

X-Decoder(L) [79] 2.2 8.6 44.9 7.5 66.0 79.2 33.0 11.6 75.9 42.1 53.0 68.4 15.6 20.1 59.0 2.3 19.0 67.1 22.5 9.9 22.3 13.8 32.3
OpenSEED(L) [70] 2.1 82.9 40.9 4.7 72.9 76.4 16.9 13.6 92.7 38.7 50.0 40.0 7.6 4.6 74.6 1.8 15.6 82.8 47.4 15.4 15.3 52.3 36.1
ODISE(L) [61] 2.9 84.1 41.6 18.3 74.9 81.3 39.8 23.0 41.4 51.4 60.4 71.9 43.8 0.4 65.4 2.8 30.2 79.9 9.1 15.0 28.6 37.5 38.7
SAN(L) [62] 2.6 69.2 44.0 11.4 67.4 77.4 46.5 23.3 88.8 62.9 60.1 82.2 10.4 1.8 60.1 2.9 20.0 81.8 35.1 31.2 41.4 43.5 41.4
HIPIE(H) [57] 1.9 46.5 50.1 76.1 68.6 61.1 31.2 24.3 94.2 64.0 53.4 79.7 7.0 6.7 64.6 2.2 41.8 81.5 8.8 17.9 31.2 50.6 41.2
UNINEXT(L) [63] 2.6 75.2 52.1 71.2 72.1 81.1 16.9 23.7 93.7 57.0 54.0 84.1 6.1 13.4 64.6 0.0 44.4 80.7 21.0 10.1 10.8 56.3 42.1

MOBIUS-3 15.4 75.5 40.5 14.1 78.1 82.2 15.9 40.5 32.5 29.6 51.8 83.0 26.2 6.2 67.1 2.2 26.5 78.9 4.3 9.6 32.0 64.9 39.9
MOBIUS-2 1.0 65.8 23.8 0.4 75.7 74.3 16.1 40.7 94.9 73.4 28.4 77.5 54.8 12.6 68.3 12.9 31.8 83.8 1.7 25.0 29.9 44.8 42.6

MOBIUS-1 3.1 63.2 23.3 0.9 72.6 84.0 17.0 39.9 94.3 58.7 31.7 73.9 53.5 23.7 62.8 6.4 19.0 82.8 1.5 18.7 33.9 57.6 41.9
MOBIUS-0 4.4 79.4 29.9 0.1 76.2 77.7 14.7 33.4 92.2 72.7 54.0 70.2 40.5 22.2 70.0 7.4 24.0 88.3 0.3 15.6 29.1 62.8 43.9

Table 8. Results on SeginW benchmark across 22 datasets. We report the AP mask.

Model Pa
sc

al
V

O
C

A
er

ia
lD

ro
ne

A
qu

ar
iu

m

R
ab

bi
ts

E
go

H
an

ds

M
us

hr
oo

m
s

Pa
ck

ag
es

R
ac

co
on

Sh
el

lfi
sh

V
eh

ic
le

s

Pi
st

ol
s

Po
th

ol
e

T
he

rm
al

Avg

GLIP-T [69] 56.2 12.5 18.4 70.2 50.0 73.8 72.3 57.8 26.3 56.0 49.6 17.7 44.1 46.5
GLIP-L [69] 61.7 7.1 26.9 75.0 45.5 49.0 62.8 63.3 68.9 57.3 68.6 25.7 66.0 52.1
GLEE-Plus [58] 67.8 10.8 38.3 76.1 47.4 19.2 29.4 63.8 66.7 63.8 62.6 15.3 66.5 48.3

GLEE-Lite [58] 61.7 7.9 23.2 72.6 41.9 51.6 32.9 51.1 35.0 59.4 45.6 21.8 56.9 43.2
MOBIUS-3 67.1 18.9 31.7 54.7 35.8 40.0 51.2 48.6 45.8 60.1 62.6 12.3 43.1 44.0
MOBIUS-2 64.9 13.0 23.2 75.6 12.9 18.1 62.9 50.1 37.2 61.1 49.0 17.7 40.4 40.5

MOBIUS-1 64.5 11.1 17.9 79.1 10.5 29.6 65.1 50.7 27.2 61.5 54.5 15.2 40.3 40.5
MOBIUS-0 63.3 13.7 24.7 75.5 6.0 39.0 47.5 53.4 34.8 61.1 55.7 20.4 34.1 40.7

Table 9. Zero-shot performance on 13 ODinW datasets.

Method Pix. Dec.
Type

FLOPs (G)

Vis. Enc. Pix. Dec. (+Modality Fusion) Decoder Total

GLEE† [59] MaskDINO [23] 52.4 138 28.2 20.1 238.9
GLEE† [59] RT-DETR [73] 52.4 69.2 1.6 20.0 143.1
MOBIUS (Ours) Bottleneck 52.4 61.4 5.6 10 129.8

Table 10. Component-wise Efficiency Analysis. We compare
the computational cost of MOBIUS and GLEE [59] variants us-
ing MaskDINO [23] or RT-DETR [73] decoders. FLOPs are re-
ported for the vision encoder, pixel decoder, modality fusion, and
decoder. All models use an R50 vision encoder at 800×800 reso-
lution, excluding the text encoder from the total FLOPs count.

8.5. Effect of Uncertainty Calibration on Query
Pruning

In Tab. 14, we investigate the effect of uncertainty calibra-
tion on query pruning on the COCO dataset. Importantly,
we find that uncertainty calibration enables more meaning-
ful differentiation of relevant vs. irrelevant queries, en-
abling better performance when applying query pruning at
inference time.

Vision Encoder
Vision Encoder

Efficiency COCO-val

FLOPs (G) Latency (ms) APbox APmask
M

ob
ile

N
et

v4 MobileNetv4-conv-small 3 25.4 39.0 35.4
MobileNetv4-conv-medium 15 39.0 43.6 39.2
MobileNetv4-conv-large 38 48.4 47.2 42.3
MobileNetv4-hybrid-medium 17 58.5 44.6 40.2
MobileNetv4-hybrid-large 44 66.8 46.9 41.9

Fa
st

er
V

iT FasterViT-0 66 61.5 45.2 40.9
FasterViT-1 105 72.3 46.3 41.9
FasterViT-2 170 85.3 48.2 43.4
FasterViT-3 358 99.8 49.3 44.5

Table 11. Mobile encoders comparison. We compare the la-
tency, FLOPs, and performance on COCO val of MOBIUS models
trained on COCO following the 1x schedule using MobileNetv4
and FasterViT image encoders. We report Average Precision (AP)
for box and mask predictions. The latency (in ms) is measured on
one NVIDIA A100 with the images resized to 800 on their shorter
side while preserving aspect ratio.

8.6. Confidence Trajectory Functions
In Tab. 15 we investigate the effect of different confidence
trajectories for our query pruning strategy. As explained in
Sec. 3.2, our query pruning strategy relies on a threshold
that increases layer-by-layer following a sigmoidal trajec-
tory. We here compare to a logarithmic and exponential tra-
jectory. Each strategy results in a different increase steep-
ness for the confidence threshold at different layers. Empir-
ically, we find that the sigmoidal trajectory, which enables
slower increase at the beginning and end of the decoder with
a steeper increase in the middle layers, works slightly bet-
ter under its most FLOPs-efficient setting.

Exponential Interpolation Exponential interpolation
gradually increases the confidence threshold in an exponen-
tial manner. This method is particularly useful when you



Model
FLOPs (G)

Text Encoder Vision Encoder Pixel Decoder Decoder Total

w/o w/ w/

GLEE-Plus [59] 239 146 49.6 59.5 9.9 454.4

GLEE-Lite [59] 239 16.1 50 59.9 9.9 324.9
MOBIUS-3 239 90.5 19.8 24.7 4.9 354.2
MOBIUS-2 239 43.1 19.7 24.6 4.9 311.6

MOBIUS-1 239 29 18.7 23.6 4.9 296.5
MOBIUS-0 239 16.7 18.6 23.5 4.9 278.1

Table 12. Low-resolution FLOPs comparison. We compare the
FLOPs for each model component in GLEE and MOBIUS. No-
tice that the text encoder is a fixed cost that can be removed by
caching in most applications. We report its cost for processing the
80 COCO categories. We evaluate all models on low-resolution
images rescaled to 384 on their short side while preserving as-
pect ratio. We compare the pixel decoder w/ and w/o early vision-
language fusion.

Self-attn
Type

Bottleneck
Size Layers Scales FLOPs (G) COCO-val

APbox APmask

No 16 6 Single 410 44.0 39.8
Standard 16 6 Single 432 45.4 40.8
Deformable 16 6 Single 413 45.5 41.1

Deformable
32 6 Multi 399 43.9 39.5
16 6 Multi 434 45.5 41.0
8 6 Multi 547 45.7 41.2

Deformable 16 3 Single 395 44.2 39.9
16 6 Single 413 45.5 41.1

Table 13. Design Choices for Bottleneck Decoder. FLOPs and
performance (AP) are reported for COCO-val under different con-
figurations: attention mechanisms (self, deformable, or no self-
attention), bottleneck size (1/8, 1/16, 1/32), number of layers (3 or
6), scales (single or multi), and comparisons with/without multi-
scale decoding.

Cal. Strategy Rule

L
ow

er

U
pp

er

M
in

L
ay

er
s COCO-val

APbox APmask

C
O

C
O - Confidence Sigmoid 0.05 0.2 100 6 45.1 40.0

✓ Confidence Sigmoid 0.05 0.2 100 6 46.0 41.1

Table 14. Ablation Study of Query Pruning Strategy on COCO
only. Comparison of different pruning strategies across COCO
with variations in calibration, selection strategy, rule type, thresh-
old bounds, minimum kept elements, and decoder layers. We re-
port FLOPs for the decoder and results on COCO-val.

want to retain more queries in the early layers and prune
more aggressively in the later layers.

thr(l) = l + (u − l)× eα×
l

L−1 − 1

eα − 1
(6)

Strategy Rule FLOPs
COCO-val LVIS-minival

APbox APmask APbox APmask

Confidence Sigmoid 4.6–7.6 52.2–52.7 46.2–46.7 47.6–47.9 44.0–44.5
Confidence Logarithm 4.1–7.6 51.7–52.7 45.8–46.7 47.3–47.9 44.0–44.5
Confidence Exponential 4.2–7.6 51.9–52.7 45.9–46.7 47.4–47.9 44.0–44.5

Table 15. Comparison of Sigmoid, Logarithm, and Expo-
nential strategies. Results show decoder FLOPs, APbox, and
APmask on COCO-val and LVIS-minival. We report the range of
results for different hyperparameter configurations.

Here, l is the current layer index, L is the total number
of layers, and α is a parameter that controls the steepness
of the curve. The threshold starts at l and approaches u as l
increases.

Logarithmic Interpolation Logarithmic interpolation
increases the confidence threshold logarithmically. This
method allows for a rapid increase in the threshold in the
early layers, which then slows down in the later layers. It is
ideal for scenarios where you want to prune more aggres-
sively in the initial layers.

thr(l) = l + (u − l)×
log(1 + α× l

L−1 )

log(1 + α)
(7)

In this equation, α is a parameter that controls the curve’s
steepness. The threshold starts at l and grows rapidly at first,
then gradually levels off as it approaches u.

Sigmoid Interpolation Sigmoid interpolation provides a
smooth, S-shaped curve that starts slowly, increases more
rapidly in the middle layers, and slows down again as it
approaches the upper layers. This method is useful when a
balanced, gradual transition is desired.

thr(l) = l + (u − l)× 1

1 + e
−β×

(
l−L

2
L/10

) (8)

In this formula, β controls the steepness of the transition.
The threshold starts at l, increases more rapidly around the
middle layers, and finally levels off as it approaches u.

9. Qualitative Results
In table Fig. 5 we show results for the following supported
tasks for a variety of input images: (1) category-guided in-
stance segmentation using COCO categories, (2) category-
agnostic instance segmentation, (3) referring detection and
segmentation.



Raw Image COCO Segmentation Category-Agnostic Referring Segmentation

”the Rottweiler puppy”

”the white and blue van”

”the race car behind”

”the girl wearing a hat with a ribbon”

”the baby elephant”

”the rightmost golfishes”

”the majestic building”

Figure 5. Qualitative results for different instance segmentation supported by our approach. In each row, we show the input image
and report the instance segmentation results for (i) category-guided instance segmentation with COCO categories, (ii) category-agnostic
instance segmentation, (iii) referring instance segmentation.


