
Bokehlicious: Photorealistic Bokeh Rendering with Controllable Apertures

Supplementary Material

In the supplementary material, we first show the Aper-
ture Attention Block (AAB) used in the Residual Groups
(RGs) of our Bokehlicious architecture in Sec. A, then we
present the hyperparameter study of our method in Sec. B.
Next, Sec. C and Sec. D provide visualization of feature ac-
tivations within our network.

We also provide detailed descriptions of the benchmark-
ing methods and their training procedures in Sec. E.

Additional dataset samples with varying apertures are
shown in Sec. F. To align with standard single-aperture
practices, qualitative comparisons are presented in Sec. G,
along with results on the conventional EBB! Val294 [4]
benchmark in Sec. H and EBB400 [17] in Sec. I. We also
show the impact of loss proportions in Sec. J.

We compare our purely neural single-step approach to
controllable aperture bokeh rendering with previous multi-
step architectures. The full version of Tab. 5 showing the
performance at all apertures represented in RealBokeh is
provided in Sec. K. The uncropped versions of our qualita-
tive comparison in Fig. 7 can be found in Sec. L, with ad-
ditional qualitative samples in Sec. M. Examples of smooth
aperture control, interpolating between the known f -stops
from the training data, are shown in accompanying videos,
including application on smartphone images from [24] in a
zero-shot way.

Finally, we show additional comparisons on real-world
portrait photography in Sec. N, general real-world appli-
cations in Sec. O, and explore our potential in deblurring
scenarios in Sec. P, respectively.
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Figure A. Diagram of the Aperture Attention Block (AAB) from
Fig. 4, it embeds our Aperture Aware Attention (AAA) mecha-
nism as described in Fig. 5 and sec 4.3. This block architecture
was adopted from Fan et al. [6].

B. Hyperparameter Study
The results of our study on the effects of different hy-
perparameter choices within our proposed architecture are
shown in Fig. B. Here, a baseline configuration called
Bokehlicious-dev is used and marked in red. In particular,
it is implemented with a CNN width of 16 channels, four
Residual Groups, each containing five blocks with three
AAA heads on a 96-dimensional embedding.

For experiments a) - e), each configuration was trained
with crops of 384 × 384px resolution on RealBokeh. The
experiment f) on the training resolution used RealBokehbin.
All experiments were trained until convergence using Adam
with a learning rate of 5e− 4.
a) Embedding Dimensions: The dimension of the embed-
ding used by our transformer backbone has a significant im-
pact on the computational complexity of Bokehlicious. In-
terestingly, our architecture remains relatively robust when
using a very small embedding size such as 16.
b) CNN Width: The width of the CNN encoder and
decoder has a more limited effect on the computational
cost, compared to the dimension of the transformer embed-
ding. Likewise, our architecture is robust to thin CNN en-
coder/decoder modules.
c) Number of Residual Groups: The computational com-
plexity of our method naturally scales linearly with the
number of groups. Our results indicate that Bokehlicious
should be implemented with at least two groups.
d) Number of Attention Blocks: Analogously to the num-
ber of groups, the computational complexity increases lin-
early. Our findings indicate that a minimum of three atten-
tion blocks per group is imperative to achieve satisfactory
output fidelity.
e) Number of Attention Heads: For a 96-dimensional em-
bedding, it is advisable to employ three or four attention
heads.
f) Training Resolution: Naturally, as a training patch needs
to include the full extent of a Bokeh blur kernel, our Bokeh-
licious architecture suffers massively when small training
sizes are used. The study suggests that this criterion is likely
to be satisfied at 384px or 512px, as the enhancement be-
yond these resolutions is relatively small.

Based on the results of this study, we chose the parame-
ters of our proposed Bokehlicious-M as defined in Sec. 4.1.

C. Exploration of Deep Layers
In Fig. C, we provide a visualization of the AAA activa-
tion maps for all RGs within the transformer backbone of
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Figure B. Results of our hyperparameter study. The PSNR fidelity is denoted by the teal plots, GMACs complexity at 256 × 256px is
denoted by the blue plots, the baseline Bokehlicious-dev is marked in red. Note that experiment f) used RealBokehbin.
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Figure C. Activation maps for the encoded features, each residual group and the resulting global residual.

our method. The behavior is particularly interesting, with
the first three blocks focusing around high-intensity light
sources, which is the area that will suffer major modifica-
tions during Bokeh Rendering. In addition, groups 1-3 have
an activation of higher magnitude for the foreground ob-
jects, since in-focus contents are characterized by increased
sharpness in the rendered shallow DoF image. In group 4 of
the proposed transformer structure, we can observe the fo-
cus shifting to the Bokeh “balls” appearing around the light
sources. We can observe that the geometry of this region is
being refined from block to block. The latter groups seem to
focus specifically on areas of the image background, since
this is the area that is most affected by the Bokeh effect.

We also provide an RGB representation of the residual
learned by the proposed model, in which we can observe
the image areas affected the most by the Bokeh render-
ing. Naturally, the region corresponding to the leaves that
are in-focus receives the slightest domain shift, while con-
tents localized either closer or deeper than the position of
the projected focal plane receive higher modifications. Un-
surprisingly, high-intensity segments corresponding to out-
of-focus areas are affected the most, since the Bokeh ef-
fect corresponding to them is stronger in manifestation. We
can also observe that, in background areas with little high-
frequency detail, there is barely any activation. Logically,
this is because their changes are minimal.



Input Residual Output GT

Figure D. Additional examples for the RGB Residual corresponding to the Bokeh renderings of our method
.

D. Additional Analysis of the Residual

In Fig. D, we provide additional visual examples of the
RGB representation of the learned residual for an input im-
age and the corresponding Bokeh rendering performed by
our model. In the upper example, the focus point is the in-
tersection between the horizontal and vertical pillars. Natu-
rally, this is also the lowest magnitude area in the residual.

The same can be observed in the other two examples.
The horizontal edges are in the examples are the easiest to
follow since they also provide insight regarding the depth
of the represented scene. The important detail we want
to emphasize here is the width of the area that denotes
the segment around the edges that suffers the most severe
change during rendering. Naturally, this is correlated with
the strength of the defocus effect, which depends on the op-
tical system used for acquisition.

As our training images were acquired with a Canon 28-
70mm f/2.0 L lens, the observed geometry can be correlated
with its optical system. It shows a non-linear progression
starting from the focus point position and increases in in-
tensity as the distance to the focal plane increases.

E. Training Details of Benchmark Methods

As mentioned in Sec. 5, we used the official code bases
for all methods in our benchmarks on Bokeh Rendering in
Sec. 5.1 and Sec. 2. If any method required an additional
depth channel as input, the SOTA monocular depth estima-
tion method DepthAnything [27] was used. Whenever pos-
sible, we used a training resolution of 512 × 512px and a
batch size of four, following our own training methodology.
In case of an exception, we have noted it in the network
description accordingly.

Some methods in our benchmark at least partially adopt a
classical rendering approach [17, 18, 21]. These algorithms
provide multiple parameters that have to be manually tuned
by the user to achieve a pleasant output. All methods re-
quire a focus distance D and strength factor K, An optimal
D for each scene and an optimal K for each sample-pair is
determined following the procedure used by [17], with the
maximum possible K being 250.

In addition to these crucial basic settings, there are ad-
ditional user options that influence the look of the rendered
Bokeh. All methods offer a gamma setting G which can be
used to influence the contrast of the rendered Bokeh, with
BokehMe [17] also offering an enhanced highlight render-
ing toggle H. To simulate optimal user behavior, we op-



timize both parameters G and H on a scene-by-scene ba-
sis. Here, with an optimal D and K known, we take the
f/2.0 sample as a reference and generate all outputs for G
settings between 2 and 5 in a 0.25-step interval and pick
the G that results in the best PSNR fidelity. In the case
of BokehMe [17] there is an additional image for each G
with activated H and the optimal combination of both is
selected. This procedure for finding suitable user options
is performed separately for each method and generally im-
proves their performance by at least 1dB PSNR compared
to a default value of G = 2.2.
The following are descriptions of the methods we have in-
cluded in our Bokeh Rendering benchmark.
GRL [12] is a SOTA general image restoration model that
uniquely models image hierarchies within their global, re-
gional, and local ranges by combining a variety of trans-
former attention mechanisms. The specific version of the
GRL architecture that we employed is GRL-S. Following
the authors, we used Adam with a learning rate of 2e − 4,
but the batch size had to be reduced to one due to memory
limitations.
SwinIR [13] is a popular baseline image restoration model
that implements a swin [14] transformer for image restora-
tion. We adapt the lightweight version of this architecture
and use Adam with a learning rate of 2e−4 and trained with
a reduced resolution of 384px and a batch size of two.
MambaIR [8] is a novel SOTA image restoration model
that implements the idea of selective structured state space
models for long-range dependency modeling. We adapt the
configuration proposed for the real image de-noising task.
Moreover, we had to reduce its embedding dimension from
48 to 32 and the number of blocks by half due to memory
limits at high training and inference resolutions. This net-
work was optimized with a learning rate of 2e − 4 using
Adam, as suggested by the authors.
NAFNet [3] is a popular CNN-based baseline architecture
for a wide variety of image restoration tasks that has pre-
viously been adapted for Bokeh rendering [11, 20]. We
adopted the configuration of the model defined by the au-
thors with a width of 32 channels and trained with a learning
rate of 1e− 3 using Adam.
Restormer [30] is another popular transformer-based im-
age restoration architecture that has been applied to a vari-
ety of tasks, including defocus deblurring and Bokeh ren-
dering [29].
D2F [15] is a multi-step approach combining three
sub-modules tailored specifically to Bokeh rendering.
These modules are for defocus estimation, low-resolution
weighted layered rendering with hand-crafted kernels fol-
lowing [2] and a deep poison fusion module for upscaling
the image to its original resolution. Although an official
training code for this method is not available for reference,

we followed the procedure described by the authors [15],
but using our own loss target.
BRViT [16] is a transformer-based SOTA Bokeh rendering
method built on a Resnet-50 [9] feature extractor. Follow-
ing the procedure described by the authors, we initially pre-
train the network on input replication and then on the actual
Bokeh rendering task. Adam with a learning rate of 1e− 5
and a batch size of one was used to optimize the model.
PyNET [10] is the pioneering neural Bokeh rendering ar-
chitecture. We followed the bottom-up layer-wise training
procedure as described by the authors using Adam, but with
a reduced batch size to two. Note that since RealBokeh does
not provide depth information, we used the version without
depth guidance.
DMSHN [5] is an efficient CNN based Bokeh rendering
method. We implemented the stacked version of this archi-
tecture as it shows the best results in the original proposal
and used Adam for optimization.
DeepLens [25] is a multi-module neural Bokeh rendering
framework that assembles separate depth prediction and
neural lens blur models with guided upsampling for im-
proved efficiency. Due to its integrated nature, it only re-
quires the RGB image as input and, similarly to our method,
does not rely on external resources during inference time.
But unlike our proposal, DeepLens requires a dataset with
additional accurate ground truth depth data for its intricate
training protocol. As the collection of such a dataset in real-
world conditions is problematic, its Bokeh is learned from
the synthetic ray tracing based generator of [28].
Dr.Bokeh [21] is a multi-step rendering framework re-
quiring depth input with additional salient detection and
background-inpainting modules in its rendering pipeline.
We followed the suggestion of the authors and used
LDF [26] for salient detection and big-LaMa [23] for back-
ground in-painting.
MPIB [18] is a multi-step rendering framework re-
quiring depth input and combining a Multiplane Image
(MPI) [31] scene representation module with a background-
inpainting [23] module.
BokehMe [17] is a multi-step rendering framework requir-
ing depth input. It combines a simple classical rendering
algorithm with a concurrent neural rendering. This neural
renderer is used in difficult depth-discontinuous image ar-
eas where otherwise the classical renderer would bleed the
bokeh from the background into the foreground.



F. Additional RealBokeh Examples
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Figure E. More examples from RealBokeh. Note the high quality of spatial and color alignment between different aperture samples
and the high diversity of scene contents.



G. Additional Qualitative Comparisons for methods without aperture control
Input PyNET DMSHN Ours

MambaIR NAFNet Restormer GT
Input PyNET DMSHN Ours

MambaIR NAFNet Restormer GT
Input PyNET DMSHN Ours

MambaIR NAFNet Restormer GT

Figure F. Additional Qualitative Comparisons between top methods of our Benchmark in Tab. 4. Note how our method is better at
retaining fine foreground details such as the small branches in the first scene, while our method produces a more accurate Bokeh in the
second and third scene, particular when multiple Bokeh kernels interact with each other. Please zoom in to compare details.



H. Qualitative comparisons on EBB! Val294
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Figure G. Visual comparison with additional methods of Bokehlicious on EBB! Val294. Note that the Bokeh generated by our method
almost perfectly matches the visual appearance of the reference. The left example also shows inconsistent colors between input and
ground truth, one of the many problems of EBB!. Note that our method additionally does not change to the colors of the input.



I. Additional Qualitative Examples from EBB400
Input BokehMe [17] Ours GT

Figure H. Additional qualitative samples on EBB400. Note how ours achieves better separation between foreground and background,
while also closely matching style of the Bokeh in the GT image. Please zoom in to compare details.

J. Effect of the loss weight λ
Input L1-Loss (λ = 0) λ = 2 [7] λ = 0.6 (Ours) GT

Figure I. Visual comparison of different choices for parameter λ in our proposed loss function Eq. (5). Note how a large λ results in a
effect that is visually close to the GT, but unfortunately introduces artifact patterns (right crop). Our choice of λ = 0.6 combines the
artifact free rendering of the L1 loss target, while maintaining visual fidelity. Please zoom in to compare details.



K. Full Table for Controllable Bokeh Rendering

Method f/2.0 f/2.2 f/2.5 f/2.8 f/3.2
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Input 19.667 0.6447 0.5131 19.114 0.6663 0.4967 20.163 0.6771 0.4774 20.388 0.7015 0.4603 20.400 0.6836 0.4676

DeepLens [25] 23.069 0.8254 0.3449 22.292 0.8267 0.3526 23.379 0.8291 0.3358 23.177 0.8353 0.3243 23.833 0.8356 0.3168
Dr.Bokeh [21] 25.222 0.8970 0.2332 24.242 0.8947 0.2400 24.759 0.8972 0.2370 25.295 0.9027 0.2242 25.501 0.9053 0.2070
MPIB [18] 25.274 0.8980 0.2345 24.250 0.8952 0.2469 24.837 0.8970 0.2441 24.140 0.9023 0.2262 25.651 0.9066 0.2094
BokehMe [17] 26.151 0.9030 0.2144 25.612 0.8992 0.2192 26.450 0.9054 0.2089 26.811 0.9111 0.1988 27.032 0.9120 0.1884

Ours-M 29.636 0.9254 0.1173 29.369 0.9227 0.1158 29.903 0.9261 0.1120 30.872 0.9407 0.0939 30.858 0.9375 0.0952
Ours-L 30.883 0.9335 0.1095 30.355 0.9310 0.1068 31.021 0.9336 0.1049 32.180 0.9480 0.0882 32.224 0.9461 0.0886

Method f/3.5 f/4.0 f/4.5 f/5.0 f/5.6
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Input 20.099 0.6883 0.4618 21.325 0.7251 0.4028 21.720 0.7097 0.3906 22.706 0.7426 0.3513 23.249 0.7581 0.3358

DeepLens [25] 23.284 0.8336 0.3216 24.359 0.8460 0.2842 24.580 0.8335 0.2711 25.790 0.8606 0.2435 25.535 0.8517 0.2473
Dr.Bokeh [21] 25.589 0.9037 0.2234 26.157 0.9026 0.2053 26.659 0.9028 0.1881 27.419 0.9130 0.1795 27.463 0.9099 0.1786
MPIB [18] 25.229 0.9037 0.2146 25.975 0.9044 0.1958 26.788 0.9069 0.1779 26.896 0.9112 0.1721 27.001 0.9045 0.1780
BokehMe [17] 26.825 0.9081 0.1963 27.272 0.9109 0.1771 27.865 0.9103 0.1611 28.189 0.9181 0.1510 28.451 0.9163 0.1512

Ours-M 31.016 0.9373 0.0924 31.750 0.9441 0.0801 31.965 0.9436 0.0740 32.470 0.9426 0.0768 32.969 0.9461 0.0721
Ours-L 31.999 0.9424 0.0899 32.810 0.9485 0.0796 33.191 0.9493 0.0720 33.520 0.9486 0.0730 34.126 0.9527 0.0690

Method f/6.3 f/7.1 f/8.0 f/9.0 f/10.0
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Input 23.579 0.7657 0.3229 25.446 0.8206 0.2455 25.750 0.8102 0.2360 25.775 0.8090 0.2382 26.727 0.8285 0.2135

DeepLens [25] 26.318 0.8604 0.2306 27.471 0.8848 0.1874 28.048 0.8855 0.1738 28.172 0.8816 0.1790 28.882 0.8920 0.1645
Dr.B [21] 27.664 0.9084 0.1821 28.044 0.9224 0.1537 28.845 0.9238 0.1430 29.091 0.9246 0.1471 29.868 0.9330 0.1381
MPIB [18] 27.278 0.9090 0.1721 28.429 0.9246 0.1456 29.147 0.9263 0.1297 28.964 0.9192 0.1431 30.029 0.9301 0.1319
BokehMe [17] 28.587 0.9178 0.1544 29.770 0.9351 0.1229 30.456 0.9361 0.1127 30.081 0.9312 0.1231 31.127 0.9422 0.1174

Ours-M 33.364 0.9489 0.0656 33.388 0.9513 0.0623 34.660 0.9591 0.0457 34.453 0.9592 0.0463 36.165 0.9686 0.0363
Ours-L 34.487 0.9547 0.0634 34.462 0.9567 0.0593 35.466 0.9622 0.0466 35.464 0.9643 0.0453 37.156 0.9723 0.0371

Method f/11.0 f/13.0 f/14.0 f/16.0 f/18.0
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Input 28.494 0.8651 0.1598 29.078 0.8874 0.1257 30.628 0.9046 0.1096 32.277 0.9274 0.0759 35.201 0.9559 0.0399

DeepLens [25] 30.045 0.9274 0.1201 30.835 0.9378 0.1028 31.383 0.9388 0.0982 32.031 0.9430 0.0827 33.374 0.9554 0.0571
Dr.Bokeh [21] 29.896 0.9329 0.1230 30.642 0.9417 0.1089 30.915 0.9430 0.0999 31.527 0.9470 0.0895 32.037 0.9560 0.0658
MPIB [18] 30.240 0.9293 0.1176 31.299 0.9415 0.0989 31.543 0.9412 0.0951 32.574 0.9468 0.0824 33.723 0.9570 0.0562
BokehMe [17] 31.275 0.9419 0.1013 31.526 0.9470 0.0914 32.595 0.9517 0.0861 32.941 0.9534 0.0729 34.585 0.9641 0.0522

Ours-M 36.044 0.9667 0.0343 35.201 0.9604 0.0381 37.135 0.9693 0.0284 36.979 0.9655 0.0271 38.202 0.9732 0.0195
Ours-L 36.956 0.9701 0.0342 35.890 0.9631 0.0381 37.693 0.9717 0.0289 37.437 0.9671 0.0287 38.809 0.9750 0.0198

Table A. Performance on RealBokeh. This is the extension of Tab. 5.



L. Uncropped Qualitative Examples from Fig.7
Input

DeepLens [25] Dr.Bokeh [21] MPIB [18] BokehMe [17] Ours GT

f/2.0
f/3.5

f/6.3

Figure J. Uncropped version of the first qualitative comparison in Fig.7. In the first example our method maintains the critical sharp-
ness on the complex fur structure of the subject while accurately rendering highlight intensity and and color. One can also observe
how the multi-step nature of other approaches can cause undesirable behavior, such as the door handle being removed by the background
inpainting module of Dr.Bokeh [21]. Please zoom in to compare details.

Input

DeepLens [25] Dr.Bokeh [21] MPIB [18] BokehMe [17] Ours GT

f/2.0
f/4.5

f/8.0

Figure K. Uncropped version of the second qualitative comparison in Fig.7. In the second example our method precisely renders hair
while the contrast and saturation of the background remains accurate to the ground truth. Excluding BokehMe [17] this lack of image
contrast is especially apparent in the competing solutions. Please zoom in to compare details.



M. Additional Qualitative Examples of Bokeh Rendering on RealBokeh
Input

DeepLens [25] Dr.Bokeh [21] MPIB [18] BokehMe [17] Ours GT

f/2.0
f/3.2

f/5.6

Input

DeepLens [25] Dr.Bokeh [21] MPIB [18] BokehMe [17] Ours GT

f/2.0
f/3.5

f/8.0

Figure L. Additional samples showing Bokeh Rendering on RealBokeh. In the first example our solution successfully maintains critical
sharpness on the logo and flags while rendering a gradual falloff as the track gets closer to the camera. In the second ours renders more
accurate color and saturation of the background lights. Note that DeepLens [25] is often unable to render strong bokeh effects and shows
severe artifacts, this is in line with earlier evaluations of Peng et al. [17] on EBB400. Please zoom in to compare details.



N. Additional Comparisons with Syn-DoF

Input Syn-DoF [24] Ours (f/4.0) Ours (f/2.0)

Figure M. More examples on real-world portrait photography. Note how our model produces more distinct Bokeh than Syn-DoF [24]
(Google Portrait Mode) while improving the rendering of complex depth-discontinuities like hair and enabling control over the strength.



O. Application to Diverse Real World Images

Input Ours Input Ours
Figure N. Additional results using real-world smartphone images [24]. Our model generalizes to diverse scenarios such as portraits,
common objects, and complex scenes, without requiring depth map guidance.



P. Qualitative Comparison on RealDOF [1] defocus deblurring.
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Figure O. Defocus deblurring on the zero-shot RealDOF [1] Benchmark. Our method generates results with increased visual clarity
compared to previous SOTA methods. Please zoom in to compare details.
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