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We provide additional material to supplement our main
submission, covering:
1. Expanded motivation analysis, further exploring why the

ground truth white balance image cannot be obtained by
linearly combining WB presets.

2. Additional details about our transformer-based ap-
proach.

3. Extended dataset analysis, reporting the ∆E2000, MSE,
and MAE metrics of the five white balance (WB) presets,
along with additional examples.

4. Additional results.
5. Further ablation studies, examining the type of attention

mechanism and the number and selection of WB presets
used as input.

1. Expanded Motivation Analysis
Recent sRGB WB methods address multi-illuminant scenes
by fusing distinct WB presets, based on the hypothe-
sis that different predefined color temperatures are best
suited for regions illuminated by different light sources.
MixedWB [3] and StyleWB [6] propose performing the
blending as a linear combination. However, the assump-
tion that different illuminants can be merged linearly comes
from the RAW linear space but does not hold for non-linear
sRGB images.

In the main submission, we empirically demonstrate that,
for each pixel, the white-balanced image can lie outside the
convex hull formed by the WB presets. Figure 1 presents an
additional example from our dataset, showing an image cap-
tured under three different illuminants. As before, we select
three pixels and plot their values in the sRGB space for the
five WB presets (dots) and the ground-truth white-balanced
image (crosses). Additionally, we include the correspond-
ing values for MixedWB [3] (diamonds) and our approach
(stars). From Figure 1, we can draw two key observations:
(i) Any solution derived from linear fusion-based methods

will always reside within this convex hull, inherently lim-
iting its ability to reach the optimal correction. (ii) Our
transformer-based approach, unconstrained from the linear
combination, produces a solution that better approximates
the ground-truth image.

2. Additional Method Details
Since linear blending of different WB presets fails short to
achieve an optimal white-balanced image, we propose an
efficient non-linear fusion approach. We propose using a
Transformer Block operating in the feature space [9] and
leveraging transposed channel attention [8] to reduce the
number of parameters and improve efficiency.

Our approach first renders the RAW sensor image using
five predefined WB settings: tungsten, fluorescent, daylight,
cloudy, and shade. These WB-rendered images are concate-
nated to form a composite image, I ∈ RH×W×3P , where
H ×W represents the spatial dimension of the images and
P denotes the number of WB presets. To extract low-level
features, we apply a 3 × 3 convolution, producing the fea-
ture maps F ∈ RH×W×C . Following Zhang et al. [9], we
generate the query (Q), key (K), and value (V ) projections
from F by applying a shared Layer Normalization followed
by independent 1×1 and 3×3 convolutions. This results in
three tensors of shape RH×W×C , which encode both pixel-
wise and channel-wise context. The transposed attention
map A is then computed as:

A = Softmax(KTQ). (1)

The transformed features Fa obtained through the Multi-
Head Transposed Attention are computed as:

Fa = F +W1×1AV, (2)

where W1×1 is a point-wise convolution. As in Zamir et
al. [8], the channels C are subdivided into multiple heads,
allowing parallel learning of separate attention maps.
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Figure 1. Example from our dataset. (a)-(e) show the same scene processed with five distinct WB presets, while (f) and (g) present the
white-balance result of MixedWB [3] and our transformer-based approach, respectively. Finally, we show the white-balanced image (h).
Three sample points, marked with teal, yellow, and purple dots for the WB presets, diamonds for MixedWB [3], stars for our approach,
and crosses for the white-balanced image, are selected across all images. (g) visualizes the pixel values in the sRGB space, along with the
polytope formed by the WB presets. Note that each axis has a different scale to ease the visualization.

Table 1. Quantitative evaluation of each WB preset on our dataset in terms of ∆E00, MSE, and MAE.. We evaluate the Sony+Nikon
configuration.

∆E2000 MSE MAE

WB Preset Mean Median Trimean Mean Median Trimean Mean Median Trimean

Tungsten (2850K) 21.03 21.47 21.35 283.32 280.41 280.90 22.26 22.02 21.94
Flurorescent (3800K) 15.94 16.15 16.04 266.33 263.42 264.15 13.82 12.96 13.16
Daylight (5500K) 10.82 10.21 10.39 260.63 258.74 259.24 9.46 8.30 8.62
Cloudy (6500K) 11.14 10.47 10.70 261.37 258.91 259.59 10.32 8.89 9.37
Shade(7500K) 12.09 11.68 11.68 262.72 259.79 260.70 11.72 10.23 10.78

Following the attention module, the features are pro-
cessed by a Feed-Forward Network [5, 7], which enhances
contextual information while maintaining per-pixel inde-
pendence. This second block consists of two parallel paths,
each applying a shared Layer Normalization, followed by a
point-wise and a depth-wise convolutions. The outputs are
then fused using a 1 × 1 convolution. Finally, a 3 × 3 con-
volution reduces the channel dimension to three, producing
the final sRGB white-balanced image. In our experiment,
we set P = 5 and C = 15.

3. Expanded Dataset Analysis
Our dataset comprises 16,284 sRGB images rendered with
five different WB presets: tungsten (T), fluorescent (F), day-
light (D), cloudy (C), and shade (S). In Table 1, we report
the ∆E2000, MSE, and MAE for each of the distinct WB
presets. The Daylight preset consistently achieves the best
performance likely due to its neutral color temperature com-
pared to the other WB presets. Please note how the results
of our method (Table 1 in the main paper) more than halve
the error of this best-preset configuration analysis.

Figure 2 provides additional examples from our dataset.

We show three different scenes with three different light
setups. For each scene, the first and second rows illus-
trate two-illuminant setups combining outdoor and indoor
light sources. The third row demonstrates a three-illuminant
setup, where all light sources are active simultaneously.
These examples emphasize how variations in light intensity
are accurately captured in the ground truth images, as seen
in their brightness levels.

4. Additional Results
Pseudo-weight maps. Unlike linear blending methods
that explicitly compute per-pixel weighting maps, our ap-
proach estimates the white-balanced image in an end-to-end
manner. However, to provide interpretability, we propose
generating a set of pseudo-weight maps. These maps are
obtained by computing the normalized per-pixel Euclidean
distances between the output image and the different WB
presets. Figure 3 presents two examples, where the pseudo-
weight maps are visualized using the viridis color map. In
the first scene (also shown in Figure 1), our method pro-
duces a white-balanced image that is predominantly closer
to the Daylight preset. However, certain regions, such as



Table 2. Quantitative evaluation of our method on the Cube+ dataset [4]

∆E2000 MSE MAE

Mean Median Trimean Mean Median Trimean Mean Median Trimean

Ours 4.19 3.20 3.52 68.33 30.79 37.53 2.98 2.21 2.42

Table 3. Spatial vs. transposed attention ablation study. Results from the combined Sony and Nikon splits of our dataset.

∆E2000 MSE MAE

Mean Med Trimean Mean Med Trimean Mean Med Trimean Param T(ms)

Average Spatial Transformer 4.72 4.52 4.38 92.02 53.40 53.34 4.80 3.45 3.34 105K 248
Concat Spatial Transformer 4.71 4.77 4.59 82.42 50.35 50.91 3.69 3.44 3.37 22.6K 211
Average Transposed Transformer 5.13 5.20 5.02 113.82 77.44 76.09 3.78 3.46 3.43 32.5K 199
Concat Transposed Transformer (ours) 4.55 4.45 4.37 75.60 46.88 49.08 3.61 3.37 3.33 7.9K 179

the specularity on the nearest sofa and the blue table, ex-
hibit stronger similarity to the Tungsten and Fluorescent
presets. This suggests that our approach effectively adapts
to local variations in illumination. For the second scene,
our method generates a result that aligns more closely with
the Cloudy preset, demonstrating that is does not overfit to
a single WB setting. Additionally, specific image details,
such as the backpack and the cushions on the sofa, show
greater similarity to the Tungsten preset.

Extended Cube+ quantitative results. Due to space
limitations in the main submission, Table 2 reports the
mean, median and trimean values of ∆E2000, MSE and
MAE for our method on the Cube+ dataset [4], trained us-
ing a subset of RenderedWB [2].

Qualitative results. Figures 4 and 5 present additional
qualitative results from the Nikon and Sony splits of our
dataset, respectively. We compare our approach with
DeepWB [1] and MixedWB [3]. Notably, our method more
effectively removes color casts caused by different illumi-
nants, demonstrating superior performance in achieving ac-
curate white balance.

5. Additional Ablation Studies

Method design. We conduct additional experiments to
evaluate the effectiveness of our transposed attention mech-
anism compared to standard spatial attention. Apply-
ing conventional self-attention to high-resolution images is
computationally prohibitive, requiring an encoder-decoder
structure to reduce feature resolution and attention map size.

Thus, we test a model variant that incorporates spatial atten-
tion within an encoder-decoder structure. In addition, we
explore an alternative method that eliminates the need for
the composite image, I , by applying a separate transformer
block for each WB preset and averaging their outputs. Ta-
ble 3 presents the results for the combined Sony and Nikon
splits of our dataset, demonstrating that our model (Con-
cat Transposed Transformer) consistently achieves superior
performance while being the most efficient in terms of pa-
rameter count and inference time.

Number and selection of presets. We perform an abla-
tion study to evaluate the impact of the number of presets on
performance, demonstrating that five presets yield superior
results compared to any combination of just three presets.
The study is conducted using the Sony+Nikon configuration
of our dataset. The results, shown in Table 4, reveal a sig-
nificant performance improvement when using five presets,
with a 10% increase over the best-performing three-preset
configuration.



Table 4. Ablation study for our method when comparing different input presets in terms of ∆E00, MSE, and MAE. Results over the
Sony+Nikon split. We can see how using 5 presets is better than any 3 preset configuration.

∆E2000 MSE MAE

Input presets Mean Median Trimean Mean Median Trimean Mean Median Trimean

D 5.47 3.88 4.02 104.73 75.92 76.04 4.27 3.88 4.02
DST 5.18 4.94 4.96 91.41 62.23 63.03 4.06 3.74 3.76
DFC 5.23 5.22 5.08 93.94 63.50 66.05 4.16 3.97 3.91
DSC 5.23 4.96 4.99 97.57 67.90 69.73 4.34 3.95 3.97
DSF 4.97 4.74 4.75 90.24 63.79 63.54 4.08 3.82 3.77
STC 5.01 4.88 4.84 89.98 59.44 61.68 4.07 3.77 3.75
DSTFC 4.55 4.45 4.37 75.60 46.88 49.08 3.61 3.37 3.33
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Figure 2. Additional examples from our sRGB dataset for multi-illuminant WB across three scenes. The first and second rows illustrate
two illuminant setups, combining outdoor and indoor light sources. The third row shows a three-illuminant setup with all previous light
sources active simultaneously. Note how the brightness in the ground truth images reflects the varying light intensity in each scene.
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Figure 3. Pseudo-weight maps for two images from our dataset. For each scene, the first row presents the five WB presets alongside the
corresponding ground truth. The second row displays the pseudo-weight maps, computed as the normalized per-pixel Euclidean distances
between our result and each WB preset. Finally, our white-balanced estimation is shown at the end of the second row.
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Figure 4. Additional results from the Nikon split of our dataset. From left to right, DeepWB [1], MixedWB [3], our transformer-based
method, and the ground truth.
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Figure 5. Additional results from the Sony split of our dataset. From left to right, DeepWB [1], MixedWB [3], our transformer-based
method, and the ground truth.
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