
Geminio: Language-Guided Gradient Inversion Attacks in Federated Learning

Supplementary Material

Outline
The source code of Geminio is available at https://
github.com/HKU-TASR/Geminio. This document
provides additional details to support our main paper. It is
organized as follows:
• Section A: Geminio Strengthens Label Inference Attacks
• Section B: Geminio Works Under Homomorphic Encryp-

tion
• Section C: Geminio Supports Different Local Batch Sizes
• Section D: Pseudocode
• Section E: Experiment Setup
• Section F: Extended Experimental Analysis

A. Geminio Strengthens Label Inference At-
tacks

Label inference is a prerequisite for gradient inversion, with
various attack methods being proposed [29, 37, 45]. Sur-
prisingly, Geminio is not just compatible with them but also
boosts their accuracy. We use five label inference attacks
provided by the breaching library [18] and compare
the original attack with the Geminio-enhanced one. Since
our problem setting focuses on targeted reconstructions, we
only need to make sure the class labels with matched sam-
ples in the local batch are inferred. The success or failure
of inferring other class labels is unimportant because their
gradients are small and negligible in the gradient match-
ing (reconstruction optimization) process. Figure 15 re-
ports the results measured on CIFAR-20. This dataset pro-
vides ground truths for conducting such quantitative studies.
When gradients submitted by the victim are generated based
on the Geminio-poisoned malicious model, all label infer-
ence attacks are consistently improved. This phenomenon
can be explained by our observation in Figure 16 that the
class labels containing matched samples in the local batch
have their gradients amplified. Since those attacks share the
same principle to examine the gradient magnitude of differ-
ent classes, Geminio facilitates this label inference process.

B. Geminio Works Under Homomorphic En-
cryption

Our threat model considers an active attacker who is the FL
server. The attacker can execute Geminio under homomor-
phic encryption by controlling only one client. As the ma-
licious client can obtain the victim’s gradients in plain text,
Geminio can be run on the client side and perform iden-
tically to FL without homomorphic encryption. Figure 17

Figure 15. Geminio consistently improves five label inference at-
tacks. Given an attacker’s query, it leads to a high success rate
in inferring class labels containing matched samples in the local
batch.

Figure 16. Label inference attacks examine the per-class gradi-
ent magnitude. Compared with a clean model, Geminio, with
the query “dinosaur,” will amplify the gradients of the class(es)
to which the matched samples belong (the class “reptiles” in this
example). This facilitates the label inference process.

provides reconstruction results with “luxury watches” as the
attacker’s query. The two watches can be retrieved from the
victim’s gradients, leading to a high-quality reconstruction
where we can even read the brand for the first image to be
Rolex.

https://github.com/HKU-TASR/Geminio
https://github.com/HKU-TASR/Geminio

Figure 17. By controlling one FL client, Geminio can retrieve
targeted private samples under FL with homomorphic encryption.

Figure 18. The training batch size used by Geminio to poison the
model is irrelevant to the local batch size to be used by the victim.

C. Geminio Supports Different Local Batch
Sizes

During Geminio’s optimization, minibatch training needs
to be conducted but this training batch size does not need to
match the local batch size used by the client. Figure 18 re-
ports the attack recall with varying local batch sizes. We re-
peat the experiment using different training batch sizes for
Geminio to optimize the malicious global model. We ob-
serve that their targeted retrieval performances are similar,
with the smallest batch size of 8 being slightly worse. For
instance, when Geminio uses a batch size of 64 for its opti-
mization, the malicious global model can be sent to clients
with any local batch size, which may or may not be con-
trolled by the server (e.g., depending on the computing re-
sources of the client device).

D. Pseudocode

To support our main paper, Pseudocode 1 describes how
Geminio generates a malicious global model given an
attacker-specified query, a list of class names, a pretrained
VLM, and an unlabeled auxiliary dataset.

Algorithm 1 Geminio
Input: Attacker-specified query Q, a list of K class names
[c1, ..., cK], a pretrained VLM with an image encoder Vimage
and a text encoder Vtext, and an unlabeled auxiliary dataset
A
Output: Malicious global model FΘQ

1: % Generate a soft label y for each auxiliary sample x
2: for x ∈ A do
3: y = [y1, ..., yK] where yi =

Vimage(x)
⊺Vtext(ci)∑K

j=1 Vimage(x)⊺Vtext(cj)

4: Associate the auxiliary sample with its soft label as
a tuple (x,y)

5: end for
6:
7: % Train the malicious global model
8: Randomly initialize the malicious global model FΘQ

9: while not converge do
10: for Baux ⊂ A do
11: ℓ =

∑
(x,y)∈Baux

L(FΘQ (x);y)(1−α(x;Q,Baux))

|Baux|
∑

(x′,y′)∈Baux

L(FΘQ (x′);y′)(1−α(x′;Q,Baux))

where α(x;Q,Baux) =
exp(Vimage(x)

⊺Vtext(Q))∑
(x′,y′)∈Baux

exp(Vimage(x′)⊺Vtext(Q))

12: Update the malicious global model FΘQ with
loss ℓ using the Adam optimizer

13: end for
14: end while
15: return FΘQ

Table 1. The superclasses and their subclasses in CIFAR-100. We
create a benchmark dataset, CIFAR-20, that uses the 20 super-
classes for the classification problem and the 100 subclass names
as queries. This design gives us ground truths for the instance-
level retrieval.

Superclass (20) Subclasses (100)
aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates

... (16 more rows) ...

E. Experiment Setup
Our experiments cover a wide range of datasets, ML mod-
els, and FL scenarios to analyze Geminio’s properties.
Here, we describe the default experiment setup.

E.1. Datasets
We conduct experiments on three datasets: ImageNet [4],
CIFAR-20 [19], and Facial Expression Recognition
(FER) [6]. By default, visual examples are based on Im-
ageNet.

The scenario of fine-grained targeted retrieval by Gem-
inio can be imagined as an attacker writing a “query” to

search for relevant records in the victim’s private database.
Quantitative evaluation requires two ingredients: (i) a
benchmark dataset with ground truths and (ii) a set of in-
dicative performance metrics.

Benchmark: CIFAR-20 The benchmark dataset should
include a set of queries, each is a textual description and
associated with a list of relevant images. Then, we can ran-
domly sample a local batch from the dataset, use Geminio
to reconstruct images given different queries, and measure
how many relevant images are successfully reconstructed.
This process repeats for a number of random local batches
until, e.g., all training images are processed. To show-
case instance-level retrieval better, the queries should not
be the class names of the classification problem. Based on
these requirements, we created a variant of CIFAR-100 and
named it CIFAR-20. Each image in CIFAR-100 is associ-
ated with two official labels, a subclass and a superclass (see
Table 1 for four superclasses and their subclasses). We use
the 20 superclasses for the classification problem and the
100 subclasses as queries. With this design, we can easily
obtain images in the local batch that should be retrieved for
a given query (i.e., a subclass name).

Metrics: Attack Recall and Precision We follow Fish-
ing’s approach [35] to determine whether an image in a lo-
cal batch dominates and will be reconstructed. In particular,
if the gradients produced by an image have a cosine similar-
ity with the average gradients over a threshold, it is consid-
ered a reconstructed sample. While Fishing uses 0.95 as the
threshold, we found that this is overly restrictive. Instead,
we use 0.90. Note that we observe multiple examples where
targeted reconstruction succeeds even if the cosine similar-
ity is below 0.90. Our choice (i.e., 0.90) is still conserva-
tive. A more principled approach is considered as our future
work. Based on this thresholding, we can measure the per-
centage of targeted images being reconstructed (i.e., Attack
Recall) and, among all reconstructed images, the percent-
age of them being the actual targeted images (i.e., Attack
Precision).

E.2. FL Configuration

The FL system aims to train a ResNet34 [15] model. Fol-
lowing existing works [10, 12, 35, 37, 42, 46, 47], we use
FedSGD to be the default protocol. The FL client receives
a model from the server, updates it with a batch of private
samples, and returns the gradients to the server, which is
malicious, and attempts to reconstruct private samples from
it.

E.3. Attack Configuration
For Geminio, we use CLIP [24] with the ViT-L/14 Trans-
former architecture as the pretrained VLM1 to process aux-
iliary data, which comes from the respective validation set.
Geminio poisons the model with a training batch size 64 us-
ing Adam as the optimizer. For gradient inversion, we use
HFGradInv [36].

E.4. Computing Environment
All experiments are conducted on a server with Intel®
Xeon® Gold 6526Y CPU, 64GB RAM, and two NVIDIA
RTX 5880 Ada Lovelace GPUs.

E.5. Implementation
Geminio is written in PyTorch and can be easily in-
tegrated into existing GIAs. Our implementation uses
breaching [18] and HFGradInv [36], a collection of
GIAs, to demonstrate such a plug-and-play feature. We first
extracted image features from auxiliary data, which took
about 7 minutes for ImageNet. Given a query from the at-
tacker, Geminio can use those pre-generated image features
to poison the model in less than 8 minutes.

F. Extended Experimental Analysis
This section provides extended experimental results to as-
sess the generalization ability and robustness of Gemi-
nio under a variety of practical and challenging scenarios.
Specifically, we evaluate the system using complex natu-
ral language queries, diverse auxiliary datasets, and differ-
ent vision-language models. We also examine its effec-
tiveness across federated learning rounds, varying recon-
struction conditions, and large-batch settings. These results
demonstrate that Geminio consistently enables targeted gra-
dient inversion attacks under realistic and diverse federated
learning configurations.

F.1. Complex Dataset and Query Evaluation
We conducted additional experiments to evaluate Geminio
on complex datasets and queries. While CIFAR datasets
have superclass labels that allow us to generate queries with
ground truths, ImageNet lacks such annotations. Hence, we
designed the following experiment: for each minibatch, we
randomly select one image from it, use an image caption-
ing model [20] to generate a description, and then use this
description as the query. The attack is considered success-
ful if Geminio retrieves the corresponding image for recon-
struction. These automatically generated captions tend to
be complex, as shown in Figure 26.

Figure 27 shows that Geminio’s performance in this
more complex setting is on par with CIFAR-20 results (Fig-

1https://huggingface.co/openai/clip-vit-large-
patch14

https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/openai/clip-vit-large-patch14

ure 6a in the main paper), demonstrating its effectiveness
across different levels of query complexity.

Figure 26. Example Com-
plex Queries

Figure 27. ImageNet Complex Query
Results

F.2. Auxiliary Dataset Requirements
The auxiliary dataset does not need to match the distribu-
tion of the victim’s private data. Instead, it simply needs to
contain some samples that exhibit the features mentioned in
the query so that the malicious model can learn what to am-
plify (or ignore). For instance, for the query “red carpet,”
having actual red carpet images in the auxiliary dataset is
unnecessary. It suffices to include some red-colored objects
(e.g., apples) and some carpets. Public datasets like Ima-
geNet or CalTech256 are typically diverse enough for this
purpose. The attacker can easily check this using the pre-
trained VLM to measure the similarity between the query
and the auxiliary samples. If necessary, additional relevant
data can be trivially obtained via image search engines or
text-to-image models.

F.3. Effectiveness Across Different VLMs
Our quantitative studies on CIFAR-20 show comparable at-
tack F-1 scores across VLMs of various sizes and meth-
ods (e.g., 68.13% with CLIP and 69.54% with SigLIP).
However, we observe that advanced models handle complex
and long queries more effectively. While this paper uses
CIFAR-20 to demonstrate the feasibility of targeted GIAs
via text descriptions, our future work will develop a bench-
mark dataset with complex queries and their ground-truth
retrieval results to further advance research in this direction.

F.4. Effectiveness Across FL Rounds
Geminio remains effective regardless of the FL model’s
convergence state. When training a malicious model, the
attacker can initialize it either (i) randomly or (ii) using the
latest global model. We conducted experiments on both
cases. Figure 28 shows Geminio’s consistent attack F-1
score across different FL rounds, demonstrating its robust-
ness throughout the federated learning process.

F.5. Query Generality and Reconstruction Quality
Regarding reconstruction quality, the number of matched
samples is a key factor. While Geminio can prioritize them

Figure 28. Effectiveness Across FL Rounds

for recovery, a larger number of matched samples places
greater demands on the underlying reconstruction algorithm
(e.g., HFGradInv, the default in our paper). To better under-
stand this, we conducted experiments measuring the recon-
struction quality (LPIPS) with varying numbers of matched
samples under FedSGD and FedAvg. The batch size was
fixed at 256. Figure 29 shows that LPIPS remains sta-
ble up to 16 matched samples, beyond which it degrades
quickly. This trend is expected, as performance increasingly
depends on how well the reconstruction algorithm can han-
dle a larger number of samples. Consistent with the results
reported in its original paper, we found that HFGradInv can
stably recover up to 16 samples. Geminio allocates this bud-
get to focus on those highest-value samples for reconstruc-
tion. We consider that the attacker can provide concrete
descriptions to take advantage of Geminio.

Figure 29. Query Generality Analysis

F.6. Additional Visual Examples
Geminio can prioritize reconstruction to recover those sam-
ples that match the attacker-provided queries. The method
demonstrates consistent effectiveness across different query
types and batch compositions, successfully identifying and
reconstructing targeted samples while ignoring irrelevant
data in the same batch.

High-Quality Reconstruction Geminio is designed to
enable targeted attacks, with reconstruction quality depend-
ing on the underlying optimization algorithm (e.g., Invert-
ingGrad in our paper). As shown in Figure 30, Geminio
benefits from advancements in reconstruction optimization
techniques. For instance, Geminio combined with HFGrad-

Inv from AAAI’24 produces significantly higher-quality
images than InvertingGrad from NeurIPS’20.

Private
Image

Geminio
with

InvertingGrad
(NeurIPS’20)

Geminio
with

HFGradInv
(AAAI’24)

Figure 30. Geminio is designed to enable targeted attacks, with
reconstruction quality depending on the underlying optimization
algorithm.

Targeted Reconstruction Under Complex Scene Gem-
inio remains effective even if the relevance of a sample to
the query appears in the background. As shown in Fig-
ure 31, among a batch of private images, there is one (left)
with a monkey sitting on a red car. Even though the car is
not the main character and is located at the edge, the query
“any car?” can still lead to the reconstruction of this sample
(right).

A private sample
in a batch of
128 Images

A reconstructed sample
with the query

“Any car?”

Figure 31. Geminio remains effective even if the relevance of a
sample to the query appears in the background.

Figure 32. Randomly selected 128 ImageNet images used as pri-
vate samples for large-batch reconstruction validation.

Large Batch Size Reconstruction Geminio maintains
strong reconstruction capabilities when scaled to large-
batch configurations, demonstrating consistent effective-
ness with a batch size of 128 on ImageNet. For valida-
tion, we randomly selected 128 diverse ImageNet samples
spanning multiple categories (Figure 32), which include
objects, scenes, and human activities. As shown in Fig-
ure 34, the method successfully reconstructs high-quality
images across diverse query targets. Example reconstruc-
tions include precise recoveries for specific queries such as

jewelry (Figure 34a), human facial features (Figure 34b),
bearded males (Figure 34c), firearms (Figure 34d), and
complex scenes like females riding a horse (Figure 34e).
This demonstrates Geminio’s robustness to batch size scal-
ing while preserving target attributes. In contrast, the base-
line method without Geminio (Figure 33) exhibits signifi-
cant quality degradation, failing to reconstruct critical de-
tails and often producing unrecognizable outputs.

Figure 33. HFGradInv outputs without Geminio, showing de-
graded quality and loss of target-specific features.

(a) Any jewelry? (b) Any human faces?

(c) Any males with a beard? (d) Any guns?

(e) Any females riding a horse?

Figure 34. Geminio maintains high-quality reconstruction for diverse queries at a large batch size of 128. Each subfigure corresponds to a
specific target: (a) jewelry, (b) human faces, (c) bearded males, (d) firearms, and (e) complex scenes.

	Introduction
	Background
	Related Work
	Threat Model

	Methodology
	VLM-Guided Loss Surface Reshaping
	VLM-Guided Auxiliary Label Generation

	Empirical Evaluation
	Task-agnostic, Targeted Reconstruction
	Serving as a Plugin with Broad Applicability
	Resilience to FedAvg and Defenses

	Conclusions
	Geminio Strengthens Label Inference Attacks
	Geminio Works Under Homomorphic Encryption
	Geminio Supports Different Local Batch Sizes
	Pseudocode
	Experiment Setup
	Datasets
	FL Configuration
	Attack Configuration
	Computing Environment
	Implementation

	Extended Experimental Analysis
	Complex Dataset and Query Evaluation
	Auxiliary Dataset Requirements
	Effectiveness Across Different VLMs
	Effectiveness Across FL Rounds
	Query Generality and Reconstruction Quality
	Additional Visual Examples

