
PRO-VPT: Distribution-Adaptive Visual Prompt Tuning via Prompt Relocation

Supplementary Material

This appendix presents further details and results that
could not be included in the main paper due to space con-
straints. The content is organized as follows:
• § A provides detailed explanations of the related technical

concepts.
• § B provides the detailed pseudo-code of PRO-VPT.
• § C presents the complete results of distribution adjust-

ments and offers an in-depth analysis of the underlying
nature of ADO, which motivates the nested optimization
formulation.

• § D presents attempts at adding-based adjustments, which
demonstrate significant instability.

• § E explains why our proposed PR strategy relocates only
a single prompt for each iteration.

• § F details the derivation of the Taylor expansion for the
idleness score.

• § G provides more details of implementation.
• § H presents complete results for VTAB-1k and FGVC as

well as additional experimental results.
• § I presents additional visualizations and analyses.
• § J discusses the limitations of PRO-VPT and points out

the potential direction for our future work.

A. Detailed Explanations of Technical Concepts
To help readers better understand the relevant technical con-
cepts mentioned in this paper, we provide a detailed expla-
nation of the related approaches as follows:
Vision Transformer. Given an input image x, ViT [7, 26,
64] first divides it into ne fixed-sized patches. Each patch
is then embedded into d-dimensional latent space and com-
bined with position encoding. The resulting set of patch
embeddings is denoted as E0 = {e0j ∈ Rd}ne

j=1. A learn-
able classification token x0 is then concatenated with these
embeddings, forming the input sequence [x0,E0]. This se-
quence is then fed into a series of L Transformer blocks
{Bi(·)}Li=1 as follows:

[xi,Ei] = Bi

(
[xi−1,Ei−1]

)
, i = 1, 2, . . . , L. (i)

Visual Prompt Tuning. Given a set of trainable prompt to-
kens P and the prompted backbone fP(·), the overall objec-
tive of VPT [22] is to optimize these prompts for effectively
adapting the PVM to downstream tasks:

min
P

E(x,y)∈Ttr

[
L(fP(x), y)

]
. (ii)

This formulation specifically corresponds to Eq. (2).
Depending on how the prompt set P is distributed across

the Transformer blocks, the standard VPT [22] can be cate-
gorized into two variants, VPT-Shallow and VPT-Deep:

VPT-Shallow. The entire set of p prompts, P= {pk ∈
Rd}pk=1, is introduced merely in the first block. The shallow-
prompted model is formulated as:

[x1,Z1,E1]=B1

(
[x0,P,E0]

)
, (iii)

[xi,Zi,Ei]=Bi

(
[xi−1,Zi−1,Ei−1]

)
, i=2, 3, . . . , L. (iv)

VPT-Deep. The prompt set P is uniformly distributed
across all blocks, where each block i is allocated a subset of
m prompts, Pi = {pik ∈Rd}mk=1, with P=

⋃L
i=1 Pi. The

formulation of the deep-prompted model is as follows:

[xi, ,Ei] = Bi

(
[xi−1,Pi−1,Ei−1]

)
, i = 1, 2, . . . , L. (v)

where ‘ ’ indicates that VPT-Deep does not preserve the
output corresponding to the prompt tokens Pi−1.
Proximal Policy Optimization. PPO [48] is a widely used
RL algorithm that can be applied to both discrete and contin-
uous action spaces. Specifically, PPO-Clip updates policies
by solving the following optimization problem:

θk+1 = argmin
θ

Es,a∼πθk

[
L(s, a, θk, θ)

]
, (vi)

where π is the policy, θ is the policy parameters, and k is
the k-th step. It typically takes multiple steps of SGD to
optimize the clipped surrogate function L(·, ·, ·, ·):
L(s, a, θk, θ) =

min
(πθ(a |s)
πθk (a |s)

A
πθk (s, a), clip(

πθ(a |s)
πθk (a |s)

, 1−ϵ, 1+ϵ)A
πθk (s, a)

)
,

(vii)

where Aπθk (s, a) is the advantage estimator, and ϵ is the
clip hyper-parameter. The clipping mechanism constrains
the new policy to stay close to the old one, preventing ex-
cessively large policy updates that could degrade perfor-
mance [35, 48].

B. Pseudo-Code of PRO-VPT
We provide the detailed pseudo-code for PRO-VPT in Algo. i.
Initially, it generates N prompts P and distributes them to
the PVM according to a uniform distribution D (Line 1). In
each epoch of PRO-VPT, it first calculates the estimated idle-
ness scores {Îk}Nk=1 using Eq. (6) (Line 3). If max Îk>0,
the PR process is triggered. This process begins by pruning
the prompt pk∗ with the highest score Îk∗, thereby construct-
ing an intermediate distribution D− (Line 5). The current
state of the distribution s is then computed, followed by
determining the action a∗ based on PPO (Lines 6 and 7).
Subsequently, the pruned prompt pk∗ is allocated to the a∗-
th block, resulting in a relocated distribution D+ (Line 8).

Figure i. Detailed performance gaps from distribution adjustments using prompts at epochs 25, 50, and 75, before and after prompt
tuning. Left: Performance gaps from adjustments before prompt tuning. Right: Performance gaps from adjustments after prompt tuning. The
effectiveness of distribution adjustments becomes apparent only after prompt tuning has been applied, and it also shifts with prompt updates.

Algorithm i: PRO-VPT
Input: pre-trained model f , number of epochs T ,

number of prompts N , learning rate η.
1 Initialize N prompts P and distribute them to the

model according to a uniform distribution D.
2 for t = 0, . . . , T − 1 do
3 Compute idleness scores {Îk}Nk=1 by Eq. (6).
4 if max Îk>0 then
5 Prune the negative prompt pk∗ with the

maximum idleness score Îk∗ to form D−.
6 Compute the current state s.
7 Compute the action a∗ ← PPO(s).
8 Allocate the idle prompt pk∗ to the a∗-th

block to form D+.
9 end

10 Update the prompts as P′ ← P− η · g.
11 if max Îk>0 then
12 Compute the reward r̂ by Eq. (8).
13 Update the policy networks within PPO

based on r̂.
14 end
15 end

After completing the PR process, the prompts are optimized
to P′ (Line 10). Additionally, if the PR process is activated
during the epoch, it is necessary to calculate the estimated
reward r̂ using Eq. (8) and update the policy networks in
PPO accordingly (Lines 12 and 13).

C. Comprehensive Analysis of the Underlying
Nature behind ADO

Fig. i presents the complete results of Fig. 2. Specifically,
we investigated the performance gaps from distribution ad-
justments applied to prompts at different epochs, both before

and after prompt tuning, on VTAB-1k Natural DTD using
ViT-B/16. For the adding-based adjustment, we trained with
a total of 59 prompts distributed uniformly across 12 Trans-
former blocks, resulting in one block containing 4 prompts
while the others contained 5, then added a new prompt to the
block with 4 prompts. For the repositioning-based adjust-
ment, we trained with 60 prompts allocated uniformly, and
then repositioned a single prompt. For fair comparisons, we
averaged the results over five runs with different configura-
tions, including variations in which block had the missing
prompt as well as which specific prompt was repositioned.

The following provides a summary of the analysis and
key findings presented in the main paper:

Finding 3. The effectiveness of distribution adjustments be-
comes apparent only after prompt tuning, suggesting that
these adjustments can only be properly evaluated after tun-
ing, thereby forming a nested relationship between ADO and
VPT. Comparing the left and right parts of Fig. i, we find that
adjusting the distribution without prompt tuning leads to neg-
ligible changes or even degrades performance. In contrast,
implementing prompt tuning after adjusting the distribution
leads to significant performance changes, with well-chosen
adjustments leading to notable improvements (e.g., an in-
crease of up to 2.2 pp achieved by repositioning just a single
prompt). To this end, the proper workflow for ADO and VPT
should be established as ‘distribution adjustment→ prompt
tuning→ adjustment evaluation’, with prompt tuning nested
within the distribution optimization process.

Finding 2. Adjustments in prompt distribution are influ-
enced by the updated prompts themselves, underscoring the
necessity of an iterative process that continuously refines the
distribution over prompt updates. As demonstrated in the
right portion of Fig. i, for prompts from epoch 25, we ob-
serve significant performance gains by adding a new prompt
to the 10-th and 12-th blocks, as well as by repositioning one

Figure ii. Convergence curve across different prompt-
tuning epochs, which corresponds to Fig. i.

𝐏,𝒟
Distribution Adjustments

Prompt Tuning

… …Eval

𝐏,𝒟∗

𝐏∗, 𝒟∗

① 𝐏∗ = argmin𝐏 𝔼 ℒ 𝑓𝐏,𝒟∗ 𝐱 , 𝑦

② 𝒟∗ = argmin𝒟 𝔼 ℒ 𝑓𝐏∗,𝒟 𝐱 , 𝑦
Eq. ①

Eq. ②

Need a Predic-
tion for Eq. ②

Visual Prompt Tuning

Adaptive Distribution Optimization

Figure iii. Proper workflow of ADO-VPT co-design framework. It is framed
as an iterative process, with the VPT process nested within the ADO process.

prompt to the 10-th and 11-th blocks. However, for prompts
at epoch 75, the key improvements shifted to adding to the
6-th block and repositioning to the 6-th and 9-th blocks. To
this end, the ADO-VPT co-design workflow should be estab-
lished as an iterative process, which would be ‘distribution
adjustment→ prompt tuning→ adjustment evaluation→
new adjustment’.

Additionally, to validate that the performance improve-
ments from applying both distribution adjustments and
prompt tuning mainly result from the distribution adjust-
ments rather than the tuning itself, we present the respec-
tive prompt tuning accuracy curve in Fig. ii. Clearly, the
prompted model has already converged around epoch 20,
with only slight performance fluctuations thereafter (less
than 0.3 pp). This indicates that the performance differences
observed in Fig. i (typically exceeding 0.3 pp) cannot be
attributed solely to prompt tuning alone, but rather to the
adjustments for the prompt distribution.

Building upon the underlying nature described in Find-
ings 2 and 3, a proper workflow for ADO and VPT should
be structured as an iterative nested process. Specifically, in
each iteration, the process first adjusts the distribution to
construct D∗, then tunes the visual prompts to obtain P∗.
Based on D∗ and P∗, the effectiveness of the distribution
adjustment is evaluated at the end of each iteration, marking
the completion of the current cycle and the beginning of the
next. Fig. iii illustrates this co-design workflow for ADO and
VPT. Formally, it can be expressed as a nested optimization
problem as follows:

D∗ = argmin
D

E(x,y)∈Ttr

[
L(fP∗,D(x), y)

]
, (viii)

P∗ = argmin
P

E(x,y)∈Ttr

[
L(fP,D∗(x), y)

]
, (ix)

where the notations P∗ and D∗ correspond to those depicted
in Fig. iii.

Overall, the ADO problem is naturally formulated as a
nested problem, grounded in its underlying nature. This
formulation is applicable to various distribution adjustment
strategies (e.g., adding, repositioning, or even pruning) as

well as different discrete optimization methods (e.g., evo-
lutionary algorithms and reinforcement learning). Notably,
since distribution adjustments can only be evaluated at the
end, a prediction for Eq. viii is necessary for selecting an
appropriate adjustment. To this end, it is natural to frame
ADO as a RL problem, where the reward is predicted to de-
termine the next action, and the effectiveness of that action
is evaluated afterward.

D. Inferior Performance of Adding-based Ad-
justments

Following the nested optimization framework described in
Eqs. (viii) and (ix), we have also attempted to develop an
adding-based strategy for ADO. Given that framing the ADO
objective as a RL problem is a suitable choice (refer to
§ 3.3 and § C), we also address the adding-based ADO by
leveraging RL, with the components of the Markov decision
process specified as follows:

1) State. We utilize the current prompt distribution as the
state, denoted as s = D. After adding a new prompt and
performing prompt tuning, the state transitions to s′.

2) Action. Unlike prompt repositioning, which considers
L2 possible block arrangements, the adding-based ADO
involves only L potential adding operations. As a result, the
adding-based ADO does not require decomposition for RL,

Figure iv. Convergence curves comparing adding-based and
repositioning-based strategies. The adding-based strategy ex-
hibits significantly less stability.

and the action is straightforwardly represented as a ∈ [L].
3) Reward. Similar to the PR strategy, the reward is for-

mulated based on Eq. (viii) as r=∆L(fP,D, fP′,D′), where
D′ denotes the updated prompt distribution after adding and
P′ represents the tuned prompts.

Similarly, we employ PPO for this RL problem to tackle
the adding-based ADO objective, while adopting the overall
framework illustrated in Fig. iii.

Fig. iv illustrates the performance comparison between
the adding-based strategy and repositioning-based strategy
(PRO-VPT) on the VTAB-1k Natural Cifar100 dataset. It
can be clearly observed that the adding-based strategy is
significantly less stable and underperforms compared to the
repositioning-based approach. We attribute this discrepancy
to the undertraining of newly added prompts and potential
conflicts with existing ones. Consequently, our work focuses
on developing the repositioning-based strategy for ADO.

E. Relocating One Prompt for Each Iteration

Here, we explain why we restrict the relocation process to
operate on only a single prompt for each iteration. Since
we frame the allocation step as a RL problem, we need
to evaluate the effectiveness of each allocation decision
for relocated prompts. Relocating more than one prompt
simultaneously would necessitate multiple reward evalua-
tions, substantially increasing task complexity and computa-
tional overhead. Therefore, we designed to relocate only one
prompt per iteration to maintain simplicity and efficiency in
the allocation process.

F. Derivation of the Taylor Expansion for the
Idleness Score

Based on the pruning objective in Eq. (3), the original idle-
ness score is defined as:

Ik = ∆L(fP,D, fP,D|dk=0), (x)

where dk = 0 indicates that the k-th prompt is pruned.
Equivalently, this equation can be expressed as:

Ik = ∆L(fP,D, fP|pk=0,D), (xi)

where pk = 0 represents that the k-th prompt is a zero
vector.

Let pkj ∈pk denote as the prompt parameter. The differ-
ence in losses with and without the prompt parameter, i.e.,
the idleness score of pkj , is given by:

Ikj = ∆L(fP,D, fP|pkj=0,D). (xii)

Considering the entire prompt set as a concatenated vector
P={p00, p01, . . . , pNd}, we are able to approximate Ikj in

Table i. Hyper-parameters for VPT and PRO-VPT.

VPT PRO-VPT

Batch size 64 (p≥100), 128 (p<100) 64
Learning rate schedule cosine decay -
Optimizer SGD
Optimizer momentum 0.9
base lr range {50., 25., 10., 5., 2.5, 1., 0.5, 0.25, 0.1, 0.05}
Weight decay range {0.01, 0.001, 0.0001, 0.0}
Drop rate 0.1
Total epochs 100

the vicinity of P by its first-order Taylor expansion:

Îkj ≈ gT
(
P−P |pkj=0

)
≈ gkjpkj ,

(xiii)

where gkj=
∇L
∇pkj

represents the element of the gradient g.
For the idleness score of a prompt pk = {pkj}dj=1, we

can approximate it by summing the score of its individual
parameters, as follows:

Îk ≈
d∑

j=1

gkjpkj ≈ gT
k pk. (xiv)

To this end, we are able to efficiently approximate the
idleness scores {Ik}Nk=1 by a single backpropagation pass,
thereby avoiding the need to evaluate the idleness scores of
all N prompts individually.

G. More Implementation Details
Data Augmentation. Apart from data normalization, we
resize the input images to 224×224 pixels for VTAB-1k
and apply a randomly resize crop to 224×224 pixels and
horizontal flipping for FGVC, as outlined in [13, 22, 51, 59].
Training Hyper-Parameters. Specific to training hyper-
parameters, we largely adopt the same settings as depicted in
VPT [22]. Tab. i summarizes the hyper-parameter configura-
tions comparing the experiments of VPT and our approach.
Following [13, 22], we conduct a grid search on the valida-
tion set of each task to determine the optimal learning rate
and weight decay; the learning rate is set as base lr×b/256,
where b denotes the batch size and base lr is selected from
the range specified in Tab. i. Notably, PRO-VPT does not re-
quire specific-designed large learning rates as in [22]. For all
experiments conducted with our implementation, the results
are averaged over three random seeds.
PPO Hyper-Parameters. We also detail the hyper-
parameters of our PPO implementation for reproducibility.
Both the actor and critic networks are two-layer MLPs with
64 hidden units per layer. The total number of parameters of
the two policy networks is precisely 0.0136M. The learning
rates are 0.0003 for the actor and 0.001 for the critic. Ad-
ditionally, we set the discount factor to 1 and the clipping
factor to 0.2.

Table ii. Specifications of the VTAB-1k datasets.

Group Task # Classes
Splits

Train Val Test

Natural

CIFAR-100 100

800 200

10 000
Caltech-101 102 6 084
DTD 47 1 880
Oxford Flowers 102 6 149
Pets 37 3 669
SVHN 10 26 032
Sun397 397 21 750

Specialized

Patch Camelyon 2

800 200

32 768
EuroSAT 10 5 400
RESISC45 45 6 300
Diabetic Retinopathy 5 42 670

Structured

CLEVR-Count 8

800 200

15 000
CLEVR-Distance 6 15 000
DMLab 6 22 735
KITTI-Distance 4 711
dSprites-Location 16 73 728
dSprites-Orientation 16 73 728
smallNORB-Azimuth 18 12 150
smallNORB-Elevation 9 12 150

Datasets and Pre-Trained Backbones Specifications.
Tabs. ii and iii present the statistics of each task in VTAB-1k
and FGVC w.r.t. the number of classes and the number of
images in the train, validation, and test splits. The tables are
largely “borrowed” from [51]. Moreover, Tab. iv provides
the details of the pre-trained backbones used in this paper,
which is largely “borrowed” from [22].
Reproducibility. PRO-VPT is implemented in Pytorch and
timm. Experiments are conducted on NVIDIA A30-24GB
GPUs. To guarantee reproducibility, our full implementation
will be publicly released.

H. More Experimental Results
Complete Results for VTAB-1k. Tab. v presents com-
prehensive results for VTAB-1k, using both ImageNet and
Inception normalizations. Although several of the best pre-
task results from other PEFT methods differ and exceed
those listed in Tab. 1, PRO-VPT remains highly competi-
tive, achieving a state-of-the-art average accuracy of 78.0%
among all evaluated methods.

Fig. v illustrates a comparison of prompt-based methods,
including the previous state-of-the-art (iVPT), the baseline
(VPT), and our proposal (PRO-VPT). All scores were nor-
malized by xnorm=x−xmean. It is evident that PRO-VPT out-
performs both current leading methods, establishing a new
state-of-the-art performance for prompt-based techniques.
Complete Results for FGVC. Tab. vi presents comprehen-
sive results for FGVC, utilizing both ImageNet and Inception
normalizations. The best pre-task results remain consistent
with those in Tab. 2, and PRO-VPT demonstrates superior
performance on large-scale fine-grained datasets.

Table iii. Specifications of the FGVC datasets. For datasets
marked with *, we follow [51] to randomly sample train and vali-
dation splits since validation sets are not available from the original
datasets.

Dataset # Classes
Splits

Train Val Test

CUB-200-2011* [56] 200 5 394 600 5 794
NABirds* [55] 555 21 536 2 393 6 084
Oxford Flowers [42] 102 1 020 1 020 6 149
Stanford Dogs* [6] 120 10 800 1 200 8 580
Stanford Cars* [10] 196 7 329 815 8 041

Table iv. Specifications of the pre-trained backbones.

Backbone Pre-trained
Strategy

Pre-trained
Dataset

Param
(M)

Feature
dim d

Pre-trained
Model

ViT-B/16
Supervised ImageNet-21k

85 768 checkpoint
ViT-L/16 307 1024 checkpoint
ViT-H/14 630 1280 checkpoint

Swin-B Supervised ImageNet-21k 88 1024 checkpoint

ViT-B/16 MAE ImageNet-1k 85 768 checkpoint
ViT-B/16 MoCo-v3 checkpoint

Figure v. Comparison of prior state-of-the-art (iVPT), baseline
(VPT), and our method (PRO-VPT). Our approach subsumes
two representative methods.

Generalizability Study on Detection and Segmentation
Tasks. We also conduct experiments on a broader range
of downstream tasks, including object detection, instance
segmentation, and semantic segmentation. Specifically, we
evaluate object detection and instance segmentation perfor-
mance on the COCO dataset [36], using Mask R-CNN [17]
with a Swin-T backbone pre-trained on ImageNet-1k. For the

https://storage.googleapis.com/vit_models/imagenet21k/ViT-B_16.npz
https://storage.googleapis.com/vit_models/imagenet21k/ViT-L_16.npz
https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz
https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth
https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth
https://dl.fbaipublicfiles.com/moco-v3/vit-b-300ep/linear-vit-b-300ep.pth.tar

Table v. Comprehensive results on the VTAB-1k datasets. Performance results are reported using both ImageNet normalization (◦) or
Inception normalization (•), presented in % after a complete training schedule with ViT-B/16 supervised pre-trained on ImageNet-21k. The
best results of prompt-based methods and other PEFT approaches are highlighted in bold. E: Early-stopping based on the test set. †: Lack of
complete code or hyperparameter configurations for the method, hence results are reported as presented in the original paper. 1Average
across the average accuracies of the VTAB-1k groups, following previous work.

Natural Specialized Structured
Pa

ra
m

(M
)

C
ifa

r1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
10

2

Pe
ts

SV
H

N

Su
n3

97

G
ro

up
A

vg
.

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

G
ro

up
A

vg
.

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t.

D
M

L
ab

K
IT

T
I-

D
is

t.

dS
pr

-L
oc

.

dS
pr

-O
ri

.

sN
O

R
B

-A
zi

.

sN
O

R
B

-E
le

.

G
ro

up
A

vg
.

G
lo

ba
lA

vg
.1

Full ◦ 85.8 68.9 87.7 64.3 97.2 86.9 87.4 38.8 75.9 79.7 95.7 84.2 73.9 83.4 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 47.6 69.0
Full • 85.8 73.2 92.6 70.4 97.9 86.2 90.6 39.6 78.6 87.1 96.6 87.5 74.0 86.3 66.6 61.0 49.8 79.7 82.6 51.9 33.5 37.0 57.8 74.2
Linear ◦ 0.04 63.4 85.0 63.2 97.0 86.3 36.6 51.0 68.9 78.5 87.5 68.6 74.0 77.2 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 26.9 57.7
Linear • 0.04 78.1 88.1 69.0 99.1 90.0 36.0 56.9 73.9 79.8 90.7 73.7 73.7 79.5 32.4 30.5 35.9 61.9 11.2 26.2 14.3 24.5 29.6 61.0

LoRA • [20] 0.29 83.0 91.7 71.6 99.2 90.9 83.8 56.7 82.4 86.2 95.7 83.5 71.9 84.3 77.7 62.3 49.0 80.2 82.2 51.7 31.0 47.0 60.1 75.6
FacT-TK8 ◦ [23] 0.05 70.3 88.7 69.8 99.0 90.4 84.2 53.5 79.4 82.8 95.6 82.8 75.7 84.2 81.1 68.0 48.0 80.5 74.6 44.0 29.2 41.1 58.3 74.0
FacT-TK8 • [23] 0.05 74.9 92.7 73.7 99.1 91.3 85.5 57.7 82.1 86.8 94.9 84.1 70.9 84.2 81.9 64.1 49.2 77.2 83.8 53.1 28.2 44.7 60.3 75.5
FacT-TK≤32 ◦ [23] 0.10 70.6 90.6 70.8 99.1 90.7 88.6 54.1 80.6 84.8 96.2 84.5 75.7 85.3 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 60.7 75.6
FacT-TK≤32 • [23] 0.10 74.6 93.7 73.6 99.3 90.6 88.7 57.5 82.6 87.6 95.4 85.5 70.4 84.7 84.3 62.6 51.9 79.2 85.5 52.0 36.4 46.6 62.3 76.5
Consolidator † [15] 0.30 74.2 90.9 73.9 99.4 91.6 91.5 55.5 82.4 86.9 95.7 86.6 75.9 86.3 81.2 68.2 51.6 83.5 79.8 52.3 31.9 38.5 60.9 76.5
SSF E◦ [34] 0.24 69.0 92.6 75.1 99.4 91.8 90.2 52.9 81.6 87.4 95.9 87.4 75.5 86.6 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 59.0 75.7
SSF E• [34] 0.24 61.9 92.3 73.4 99.4 92.0 90.8 52.0 80.3 86.5 95.8 87.5 72.8 85.7 77.4 57.6 53.4 77.0 78.2 54.3 30.3 36.1 58.0 74.6
SPT-Adapter E◦ [16] 0.23 72.9 93.2 72.5 99.3 91.4 84.6 55.2 81.3 85.3 96.0 84.3 75.5 85.3 82.2 68.0 49.3 80.0 82.4 51.9 31.7 41.2 60.8 75.8
SPT-Adapter E• [16] 0.22 74.7 94.1 73.0 99.1 91.2 84.5 57.5 82.0 85.7 94.9 85.7 70.2 84.1 81.3 63.2 49.1 80.7 83.5 52.0 26.4 41.5 59.7 75.3
SPT-Adapter E◦ [16] 0.43 72.9 93.2 72.5 99.3 91.4 88.8 55.8 82.0 86.2 96.1 85.5 75.5 85.8 83.0 68.0 51.9 81.2 82.4 51.9 31.7 41.2 61.4 76.4
SPT-Adapter E• [16] 0.43 74.9 93.2 71.6 99.2 91.1 87.9 57.2 82.2 87.0 95.4 86.5 72.4 85.3 81.1 63.2 50.3 80.2 84.4 51.4 31.5 42.2 60.5 76.0
Adapter+r=16 • [51] 0.35 83.7 94.2 71.5 99.3 90.6 88.2 55.8 83.3 87.5 97.0 87.4 72.9 86.2 82.9 60.9 53.7 80.8 88.4 55.2 37.3 46.9 63.3 77.6

Prompt-based Methods:
VPT-Deep ◦ [22] 0.60 78.8 90.8 65.8 98.0 88.3 78.1 49.6 78.5 81.8 96.1 83.4 68.4 82.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 55.0 72.0
VPT-Deep • [22] 0.60 83.0 93.0 71.2 99.0 91.3 84.1 56.0 82.5 84.9 96.6 82.5 74.5 84.6 77.5 58.7 49.7 79.6 86.2 56.1 37.9 50.7 62.1 76.4
NOAH E•◦ [67] 0.43 69.6 92.7 70.2 99.1 90.4 86.1 53.7 80.2 84.4 95.4 83.9 75.8 84.9 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 61.3 75.5
SPT-Deep † [58] 0.22 79.3 92.6 73.2 99.5 91.0 89.1 51.2 82.3 85.4 96.8 84.9 74.8 85.5 70.3 64.8 54.2 75.2 79.3 49.5 36.5 41.5 58.9 75.6
iVPT † [71] 0.60 82.7 94.2 72.0 99.1 91.8 88.1 56.6 83.5 87.7 96.1 87.1 77.6 87.1 77.1 62.6 49.4 80.6 82.1 55.3 31.8 47.6 60.8 77.1
PRO-VPT (ours) 0.61 84.5 94.1 73.2 99.4 91.8 88.2 57.2 84.1 87.7 96.8 86.6 75.5 86.7 78.8 61.0 50.6 81.3 86.7 56.4 38.1 51.7 63.1 78.0

Figure vi. Convergence curves comparing VPT and PRO-VPT
with varying numbers of prompts. PRO-VPT exhibits superior
robustness.

semantic segmentation task, we use the ADE20k dataset [70]
and adopt SETR-PUP [69] with a ViT-B/16 backbone pre-
trained on ImageNet-21k. As shown in Tab. vii, the results
demonstrate that PRO-VPT consistently outperforms VPT
across both detection and segmentation tasks, highlighting
its superior generalizability.

Convergence Curves with Different Prompt Numbers.
Fig. vi illustrates the convergence curves under varying total
numbers of prompts on VTAB-1k Natural Cifar100, with
training extended to 200 epochs. Notably, VPT exhibits high
sensitivity to the number of prompts, as discussed in [21, 58].

Figure vii. Cost comparisons with different prompt numbers. We
report the latency (ms/img) and the GPU memory usage (GB). The
increased training time associated with PRO-VPT is justified by the
considerable enhancements in both performance and robustness.

An improper prompt number can lead to significant instabil-
ity during convergence and result in inferior performance. In
contrast, PRO-VPT demonstrates remarkable robustness to
variations in prompt quantity. Although it is slightly affected
during the initial convergence phase, our method ultimately
converges to consistent performance. This suggests that
learning the optimal distribution enables a more nuanced cal-
ibration of tuning intensity at each block, thereby enhancing
robustness.

Cost Analysis. As detailed in § 3, estimating the expected
objectives effectively avoids additional computation, thereby

Table vi. Comprehensive results on the FGVC datasets. Per-
formance results are reported as the highest of ImageNet normal-
ization (◦) or Inception normalization (•), presented in % after a
complete training schedule with ViT-B/16 supervised pre-trained
on ImageNet-21k. The best results of prompt-based methods and
other PEFT approaches are highlighted in bold. †: Lack of com-
plete code or hyperparameter configurations for the method, hence
results are reported as presented in the original paper.

Pa
ra

m
(M

)

C
U

B
20

0

N
A

B
ir

ds

O
xf

or
d

Fl
ow

er
s

St
an

fo
rd

D
og

s

St
an

fo
rd

C
ar

s

G
lo

ba
lA

vg
.

Full ◦ 86.0 87.3 82.7 98.8 89.4 84.5 88.5
Full • 86.0 88.0 81.5 99.2 85.6 90.6 89.0
Linear ◦ 0.18 85.3 75.9 97.9 86.2 51.3 79.3
Linear • 0.18 88.9 81.8 99.5 92.6 52.8 83.1

SSF ◦ [34] 0.39 89.5 85.7 99.6 89.6 89.2 90.7
SSF • [34] 0.39 88.9 85.0 99.6 88.9 88.9 90.3
SPT-Adapter † [16] 0.40 89.1 83.3 99.2 91.1 86.2 89.8
SPT-LoRA † [16] 0.52 88.6 83.4 99.5 91.4 87.3 90.1
Adapter+ • [51] 0.34 90.4 85.0 99.7 92.6 89.1 91.4

Prompt-based Methods:
VPT-Deep ◦ [22] 0.85 88.5 84.2 99.0 90.2 83.6 89.1
VPT-Deep • [22] 0.85 90.1 83.3 99.6 90.3 85.0 89.7
SPT-Deep † [58] 0.36 90.6 87.6 99.8 89.8 89.2 91.4
iVPT † [71] 0.41 89.1 84.5 99.5 90.8 85.6 89.9
PRO-VPT (ours) 0.86 90.6 86.7 99.7 91.8 89.6 91.7

Table vii. Generalizability study on detection and segmentation
tasks. Results are presented on two instances: COCO val2017 and
ADE20k.

COCO with Mask R-CNN ADE20k with SETR

APb APb
50 APb

75 APm APm
50 APm

75 mIoU-SS mIoU-MS

VPT-Deep 33.8 57.6 35.3 32.5 54.5 33.9 39.1 40.1
PRO-VPT 34.6 58.6 36.1 33.4 55.5 34.7 40.0 41.0

1 APb and APm are the average precision for objective detection and instance
segmentation.

2 mIoU-SS and mIoU-MS are single- and multi-scale inference of semantic segmen-
tation.

significantly enhancing the efficiency of our method. In par-
ticular, the extra training cost of our method primarily stems
from the computation of policy networks in PPO. However,
since the policy networks are merely lightweight MLPs, this
additional cost is relatively low. Specifically on VTAB-1k,
the average latency for VPT and PRO-VPT is 13.37 ms/img
and 15.55 ms/img (1.16×). Furthermore, we evaluate latency
and GPU usage with varying prompt numbers on VTAB-1k
Natural Cifar100 in Fig. vii. Although PRO-VPT does intro-
duce some extra training time, the performance and robust-
ness improvements justify this cost, and the increase in GPU
memory usage is marginal.

V
P

T
-D

ee
p

P
R

O
-V

P
T

In
p
u
t

D
at

a

(a) (b) (c) (d) (e)

Figure viii. Visualization of attention maps. PRO-VPT exhibits
more focused and precise attention with fewer artifacts.

I. Visualization and Analysis

Attention Maps. We visualize the attention maps between
[CLS] and image patches on VTAB-1k Natural Cifar100. As
shown in Figs. viii(a)-(c), while VPT successfully focuses
on the object, its attention exhibits significant artifacts [4]
and, more critically, remains scattered. For example, in
Fig. viii(a), VPT shows certain attention on the lake, which
is actually part of the background. In contrast, PRO-VPT
demonstrates more focused and accurate attention with fewer
artifacts. Furthermore, as illustrated in Figs. viii(d) and (e),
VPT appears to struggle with effectively concentrating on
the object, whereas PRO-VPT maintains its ability to focus
on the object.
Learned Distributions and Accuracy Curves. Fig. ix il-
lustrates the learned distributions in PRO-VPT as well as
the accuracy curves in comparison to VPT, based on 100
training epochs. Empirical results from more datasets fur-
ther reinforce that the prompting importance for each block
is inherently task-dependent. Moreover, the comparison of
accuracy curves between PRO-VPT and VPT, particularly
on the SVHN, Camelyon, and Resisc45 datasets, reveals that
PRO-VPT still exhibits an upward trend in accuracy during
the late training stages. This highlights the effectiveness of
learning the optimal distribution for visual prompts, which
unlocks their full potential and maximizes downstream per-
formance.

J. Limitation and Future Work

Despite demonstrating promising performance and enhanced
robustness, our approach still has certain limitations. First,
as noted in [21, 58], prompt-based methods are significantly
sensitive to the total number of prompts. Although our
method improves robustness and mitigates this issue to some
extent (refer to § 4.5), there is still room for further refine-
ment. In particular, while PRO-VPT maintains robust per-
formance within a certain range (e.g., 120-600 initialized

DTD SVHN Camelyon

Resisc45 DMLab KITTI-Dist.

Figure ix. Visualization of the prompt distributions learned by PRO-VPT and the accuracy curves compared to VPT on the VTAB-1k
datasets: Natural DTD, SVHN; Specialized Camelyon, Resisc45; and Structured DMLab, KITTI-Dist.

prompts as in Fig. vi), its performance still deteriorates when
the number of prompts deviates significantly from the op-
timal value. Consequently, our method still employs the
optimal total number of prompts per task from [22], result-
ing in relatively high parameter counts as in VPT. Second,
the constraint of relocating one prompt per iteration (see
§ E) restricts our method to relocating only limited prompts
within certain epochs. This particularly affects tasks requir-
ing high prompt numbers, hindering PRO-VPT’s ability to

learn optimal distributions. For instance, the changes from
initial uniform to learned prompt distributions are relatively
less pronounced for Camelyon and DMLab as shown in
Fig. ix, which require 100 initialized prompts per block.
Nevertheless, it is worth noting that PRO-VPT still delivers
considerable performance enhancements on these datasets.
Addressing these limitations would further enhance the ef-
ficiency and applicability of our approach in diverse down-
stream tasks.

Moreover, while this paper focuses on calibrating the dis-
tribution of prompts, the PRO-VPT framework is applicable
to most block-wise PEFT approaches, e.g., adjusting the
pre-block dimension of subspaces (i.e., the rank distribution)
in adapter-based methods. An essential future direction de-
serving of further investigation is integrating our approach
with other PEFT methods, developing a universal framework
for fine-grained robust PEFT.

	Introduction
	Related Work
	Methodology
	Notation
	Analysis and Formulation of ADO
	Iterative Prompt Relocation-based VPT
	Discussion

	Experiments
	Experiment Setups
	Main Results
	Ablation Study
	Generalizability Analysis
	Observations on PRO-VPT

	Conclusion
	Detailed Explanations of Technical Concepts
	Pseudo-Code of PRO-VPT
	Comprehensive Analysis of the Underlying Nature behind ADO
	Inferior Performance of Adding-based Adjustments
	Relocating One Prompt for Each Iteration
	Derivation of the Taylor Expansion for the Idleness Score
	More Implementation Details
	More Experimental Results
	Visualization and Analysis
	Limitation and Future Work

