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A. More Implementation Details

TwigVLM training. As described in the main text, the
twig block is trained by finetuning the shallow VLM Ms.
Specifically, Ms is initialized with the weights of the first
K+T layers and the prediction head of the corresponding
base VLM Mb. During finetuning, only the last T lay-
ers and the prediction head—collectively termed the twig
block—are updated, while the first K layers remain frozen.
This process follows the same training manner to train the
base VLM Mb. Theoretically, any suitable multimodal in-
struction tuning dataset can be employed to finetune Ms.

In our experiments, we use the LLaVA-665K dataset
[13] to train the twig blocks for the LLaVA-1.5-7B and
LLaVA-NeXT-7B models, and combine the LLaVA-665K
and VideoInstruct-100K datasets [11, 17] for the Video-
LLaVA-7B model. The optimization hyper-parameters are
detailed in Table 1. All training is performed on a server
equipped with 8 NVIDIA A100 GPUs. Under these condi-
tions, the training is highly efficient, requiring only approx-
imately 10% of the time needed to train the corresponding
base VLM, e.g., training the twig block for the LLaVA-1.5-
7B model takes about 10 GPU hours, while the training of
the original LLaVA-1.5-7B takes about 100 GPU hours.

Twig-guided token pruning (TTP). During inference,
TwigVLM leverages the TTP strategy to perform token
pruning over the base VLM: (i) at the K-th layer, select-
ing R key visual tokens (output by the K-th layer) and dis-
carding the rest tokens guided by the attention map from
the last twig layer, and (ii) applying the FinalWipe strat-
egy to further remove all the visual tokens after the Kf-th
layer. Therefore, we adjust the value of R to satisfy dif-
ferent pruning ratios calculated by the average number of
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config setting
optimizer AdamW
weight decay 0.
optimizer momentum β1, β2=0.9, 0.98
batch size 128
learning rate schedule cosine decay
peak learning rate 5e-5
warm-up strategy linearly warm-up
warm-up ratio 0.03
training epochs 1

Table 1. Training settings. These hyper-parameters are shared
across all the TwigVLM models in our experiments.

R̄ pruning ratio K R Kf

192 66.7% 2 227 24
128 77.8% 2 134 24
64 88.9% 2 41 24

Table 2. Pruning settings. These hyper-parameters correspond to
the default TTP settings of different pruning ratios.

retained visual tokens R̄. Table 2 shows the default pruning
settings for TwigVLM under different pruning ratios.
Self-speculative decoding (SSD). For efficient generation
of long responses, TwigVLM applies the SSD strategy by
using the Ms as the draft model and Mb as the tar-
get model. Specifically, in each SSD iteration, the draft
model efficiently predicts δ = 5 subsequent draft tokens
in an autoregressive manner. To further improve efficiency,
this draft generation process is equipped with an early-exit
mechanism that allows the draft model to stop generation if
the probability of the current predicted token falls below a
predefined threshold θ = 0.6. The target model then ver-
ifies these generated draft tokens in parallel, accepts those
matching the target model’s predictions, and then predicts
a next token by itself. The iteration repeats until the <EOS>
token is generated. Note that the TTP and SSD strategies
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Algorithm 1 Pseudocode of TwigVLM’s inference process

# bVLM: the base VLM model, i.e., M_b
# twig: the twig block
# K: Number of shared low layers
# K_f: The position to apply FinalWipe
# R: Number of retained visual tokens when pruning
# delta: Maximum draft token length
# theta: Confidence threshold to stop draft

def sVLM_forward(tokens):
X_k = bVLM.forward_low_layers(tokens, k=K)
prob, Attn_last = twig.forward(X_k)
a_i = argmax(prob)
return X_k, prob, Attn_last, a_i

def TwigVLM_inference(img, ques):
draft_toks = [] # temporary buffer for draft tokens
final_resp = [] # buffer for final response

# Prefilling stage of sVLM
X_k, _, Attn, a_i = sVLM_forward((img, ques))
draft_toks.append(a_i)

# Prune visual tokens in X_k using Eq. (5)
# X_k_b means shared token latents for bVLM
X_k_b = pruning(X_k, Attn, r=R)

# The loop of self speculative decoding
while EOS_TOKEN not in final_resp:

X_k, prob, _, a_i = sVLM_forward(a_i)
draft_toks.append(a_i)
X_k_b = concat(X_k_b, X_k, axis=1)

# the condition to stop draft and verify
if len(draft_toks) >= delta or prob < theta:

# removing all visual tokens after layer K_f
tgt_probs = bVLM.forward_high_layers(

X_k_b, k=K, fianl_wipe=K_f)
# verification
right_toks = [a for a, p in zip(draft_toks, tgt_probs

[:-1]) if argmax(p) == a]
right_toks.append(argmax(tgt_probs[-1]))
final_resp.extend(right_tokens)
# reset temporary variables
draft_toks = []
X_k_b = None
a_i = final_resp[-1]

return final_resp

can be seamlessly integrated, as detailed in Algorithm 1.

B. More Experimental Results

B.1. More performance comparisons

Comparisons on more benchmarks. Taking LLaVA-1.5-
7B as the base VLM, Table 4 compares the accuracies be-
tween TwigVLM and other visual token pruning methods
on nine VLM benchmarks under three different pruning
ratios. TwigVLM consistently outperforms or matches its
counterparts on all benchmarks and pruning ratios, achiev-
ing the best overall RelAcc. In particular, TwigVLM even
surpasses the upper bound given by the base VLM in
RelAcc (100.6%) with a 66.7% pruning ratio, demonstrat-
ing its spectacular effectiveness and robustness in acceler-
ating VLMs to deal with various tasks.
Comparisons on on more base VLMs. To further
demonstrate the generalization ability and superiority of
TwigVLM, we present additional experimental results on
a larger VLM, LLaVA-1.5-13B, and a more recent VLM,

Method GQA MMB MME VQAT SQAI VQAV2 RelAcc

Upper Bound, 576 Tokens (100%)
LLaVA-1.5-13B 63.2 67.7 1818 61.3 72.8 80.0 100%

Retain Averaged 192 Tokens (↓ 66.7%)

FastV 60.3 67.4 1807 60.4 74.0 77.7 98.6%

VisionZip 59.1 66.9 1754 59.5 73.5 78.1 97.4%

VisionZip‡ 61.6 67.1 1790 59.9 72.7 78.6 98.5%

TwigVLM (ours) 62.5 68.6 1840 60.4 73.1 79.4 99.9%
Retain Averaged 128 Tokens (↓ 77.8%)

FastV 57.5 65.9 1758 58 73.8 74.3 95.7%

VisionZip 57.9 66.7 1743 58.7 74.0 76.8 96.6%

VisionZip‡ 60.1 67.6 1736 59.2 73.0 77.6 97.4%

TwigVLM (ours) 61.2 66.9 1811 60.2 73.4 79.1 98.9%
Retain Averaged 64 Tokens (↓ 88.9%)

FastV 50.1 55.9 1408 52.2 73.2 61.1 83.6%

VisionZip 56.2 64.9 1676 57.4 74.4 73.7 94.2%

VisionZip‡ 58.1 65.6 1671 58.5 72.3 75.2 94.9%

TwigVLM (ours) 60.0 67.4 1765 58.4 72.4 77.0 97.1%

Table 3. Performance comparisons of TwigVLM with other token
pruning methods on LLaVA-1.5-13B.

Qwen2.5-VL-7B, which is very capable and representative.
Table 3 provides the accuracy comparisons on the larger

LLaVA-1.5-13B model. TwigVLM consistently achieves
the best overall RelAcc compared to all the counterparts,
with its superiority being more significant as the increase of
pruning ratios. These results verify the scalability and gen-
eralization ability of TwigVLM in accelerating large VLMs.

To evaluate the universality of TwigVLM to VLMs be-
yond the LLaVA family, we also apply it to Qwen2.5-VL-
7B. Since the SFT data for QwenVL is large-scale yet in-
accessible, we use a 5M subset of the MAmmoTH-VL-
10M dataset (single image split) [6] as an alternative to
train TwigVLM, which takes 12 hours on 8*A100 NVIDIA
GPUs. The results in Table 5 show that TwigVLM can still
maintain its prominent advantages over FastV in terms of
accuracy and speed, showing the effectiveness of TwigVLM
in practical scenarios.

B.2. More ablation studies
Token acceptance rate in SSD. In the context of specu-
lative decoding methods [3, 9, 12], the token acceptance
rate (abbr. TokAR) serves as a critical metric for assess-
ing the efficacy of these approaches. TokAR is defined as
the proportion of the draft tokens generated by the draft
model that are subsequently accepted by the target model.
In TwigVLM, TokAR plays a key role, which is influenced
by the effectiveness of the twig block and has a significant
impact on model’s generation speed.

To analyze how TokAR is influenced by the design
choices in TwigVLM, we evaluate this metric on several
representative variants from the ablation studies presented
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Method GQA MMB MME VQAT SQAI VQAV2 POPE MMMU MM-Vet RelAcc

Upper Bound, 576 Tokens (100%)

LLaVA-1.5-7B 61.9 64.7 1862 58.2 69.5 78.5 85.9 36.3 31.1 100%

Retain Averaged 192 Tokens (↓ 66.7%)

FastV [2] 56.5 63.7 1786 57.3 69.5 74.6 79.2 35.7 28.1 95.6%

SparseVLM [26] 57.6 62.5 1721 56.1 69.1 75.6 83.6 33.8 31.5 96.2%

PDrop [19] 57.3 63.3 1797 56.5 69.2 75.1 82.3 - - 96.4%

MustDrop [14] 58.2 62.3 1787 56.5 69.2 76.0 82.6 - - 96.6%

VisionZip [21] 59.3 63.0 1783 57.3 68.9 76.8 85.3 36.6 31.7 98.5%

VisionZip‡ [21] 60.1 63.4 1834 57.8 68.2 77.4 84.9 36.2 32.6 99.2%

TwigVLM (ours) 61.2 64.0 1848 58.0 68.8 78.1 87.2 36.6 34.1 100.8%

Retain Averaged 128 Tokens (↓ 77.8%)

FastV 53.0 61.4 1646 56.0 69.5 69.2 73.2 36.3 28.0 92.1%

SparseVLM 56.0 60.0 1696 54.9 67.1 73.8 80.5 33.8 30.0 93.6%

PDrop 57.1 61.6 1761 56.6 68.4 72.9 82.3 - - 95.2%

MustDrop 56.9 61.1 1745 56.3 68.5 74.6 78.7 - - 94.6%

VisionZip 57.6 62.0 1762 56.8 68.9 75.6 83.2 37.9 32.6 98.1%

VisionZip‡ 58.9 62.6 1823 57.0 68.3 76.6 83.7 37.3 32.9 98.8%

TwigVLM (ours) 60.6 63.5 1818 57.8 69.5 77.9 86.6 36.6 32.8 99.9%

Retain Averaged 64 Tokens (↓ 88.9%)

FastV 44.1 45.9 1218 50.7 70.0 52.0 55.6 34.0 17.8 75.3%

SparseVLM 52.7 56.2 1505 51.8 62.2 68.2 75.1 32.7 23.3 85.6%

PDrop 47.5 58.8 1561 50.6 69.0 69.2 55.9 - - 84.4%

FasterVLM [25] 51.5 58.5 1573 53.1 69.6 66.8 67.2 - 27.5 87.6%

MustDrop 53.1 60.0 1612 54.2 63.4 69.3 68.0 - - 88.1%

VisionZip 55.1 60.1 1690 55.5 69.0 72.4 77.0 36.2 31.7 94.5%

VisionZip‡ 57.0 61.5 1756 56.0 68.8 74.2 80.9 35.6 30.2 95.6%

TwigVLM (ours) 58.8 60.4 1760 55.8 70.0 75.6 82.7 35.9 31.1 96.8%

Table 4. Performance of TwigVLM on LLaVA-1.5-7B compared to existing methods under three different pruning ratios. The best
result for each benchmark and pruning ratio is bolded.

Method GQA MME MMB SQAI VQAT VQAV2 RelAcc RelSpd
Upper Bound, 1,280 Tokens (100%)

Q2.5VL-7B 60.7 2347 82.7 75.3 83.2 77.9 100.0% 100.0%
Retain Averaged 426 Tokens (↓ 66.7%)

FastV 57.2 2299 80.9 75.5 81.5 74.2 97.3% 101.7%
TwigVLM 60.4 2338 79.4 77.9 82.6 78.4 99.8% 147.7%

Retain Averaged 284 Tokens (↓ 77.8%)

FastV 53.5 2246 78.6 75.3 79.2 70.6 94.1% 103.1%
TwigVLM 59.9 2238 77.4 78.1 81.4 78.4 98.3% 151.2%

Retain Averaged 142 Tokens (↓ 88.9%)

FastV 45.1 1859 61.5 72.8 62.9 58.2 79.1% 104.3%
TwigVLM 57.6 2020 67.0 74.9 73.0 75.6 91.0% 152.3%

Table 5. Performance comparisons on Qwen2.5-VL-7B. The
RelAcc and RelSpd are evaluated on the same benchmarks men-
tioned as the main text.

in the main text. From the results shown in Table 6, we have
the following findings: (i) A more effective draft model
can be trained by only modifying the initialization strategy

ablation variant TokAR (%) RelSpd (%)

Twig block initialization (Table 4c in main text)

(a) random init. 37.7 120.4

(b) VLM layers[L-T :L] 44.1 131.4

(c) VLM layers[K:K+T ] 57.4 153.6

Number of twig layers (Table 4d in main text)

(d) T = 1 48.7 154.1
(e) T = 2 53.4 152.6

(f) T = 3 57.4 153.6

(g) T = 4 58.1 145.4

Table 6. Token acceptance rate in SSD. We evaluate the token ac-
ceptance rate (TokAR) of the variants in the ablation experiments
of the main text.

without altering the architecture. The variant (c) achieves
the highest TokAR (57.4%) and thus the highest generation
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(a) TwigVLM on LLaVA-1.5-7B

(b) TwigVLM on Qwen2.5-VL-7B

Figure 1. Performance comparisons of TwigVLM models trained
with different proportions of the training dataset. Specifically,
we use LLaVA-665K to train TwigVLM models for LLaVA-1.5-
7B and use MAmmoTH-VL-10M to train TwigVLM models for
Qwen2.5-VL-7B. Even with only 50% of respective training data,
TwigVLM is able to maintain competitive accuracy and speed.

speedup. (ii) Increasing the number of twig layers T intro-
duces more computational costs while improving TokAR
at the same time. As a result, the RelSpd exhibits only
a modest decline when T increases from 1 to 3. How-
ever, it drops distinctly at T=4, which indicates that TokAR
begins to saturate. These findings suggest that TwigVLM
achieves higher speedup by striking an optimal balance be-
tween TokAR and computation costs of the draft model.
Data efficiency. To demonstrate the data efficiency of
TwigVLM, we train multiple models using different pro-
portions (i.e., 25%, 50%, 75%, and 100%) of each model’s
respective training dataset for LLaVA-1.5-7B and Qwen2.5-
VL-7B. As shown in Figure 1, both models exhibit a gen-
eral upward trend in accuracy and speed as the amount of
training data increases. Remarkably, however, even when
trained on only 50% of their respective datasets, TwigVLM
models already achieve competitive, and in some cases
comparable, performance to models trained on the full
dataset. Moreover, TwigVLM requires only 10% of the
training cost of the corresponding base VLM (see A). To
sum up, it is highly efficient and feasible to apply TwigVLM
in industrial scenarios.
Memory footprint analysis. We measure the inference
VRAM usage of the LLaVA-1.5-7B and LLaVA-Next-7B
models in Table 7. The introduction of the twig block brings
8% extra VRAM cost for loading model weights. Com-
pared to the base VLM, the overall inference VRAM cost
of TwigVLM is comparable or slightly reduced due to the
substantial reduction of visual tokens.

model
avg. visual
tokens (R̄)

model weights
VRAM (GB)

inference
VRAM (GB)

LLaVA-1.5-7B 576 14.3 15.8
+ TwigVLM 64 15.5 16.5
LLaVA-Next-7B 2,880 14.3 17.9
+ TwigVLM 320 15.5 16.8

Table 7. Memory footprint comparisons during inference.

C. More Visualized Results

In this section, we provide more visualized results to val-
idate the effectiveness of TwigVLM’s two key compo-
nents: the twig-guided visual token pruning (TTP) and self-
speculative decoding (SSD). We use LLaVA-1.5-7B as the
base VLM in the following experiments.

Visual token pruning. To better understand the effective-
ness of the proposed TTP strategy, we compare TwigVLM
with two representative token pruning methods, namely
FastV [2] and VisionZip [21], by visualizing their atten-
tion map for token selection and providing the correspond-
ing answer predictions. We provide 16 examples from the
GQA and TextVQA benchmarks. As illustrated in Figure
2, TwigVLM demonstrates superior ability to comprehend
the semantics in both the textual prompt and image, and ac-
curately identify task-specific image patches (i.e., visual to-
kens), thereby activating more informative visual tokens for
token pruning. In contrast, FastV and VisionZip often fail
to capture the fine-grained visual details, leading to subopti-
mal token selection and incorrect predictions. Notably, even
though TwigVLM predicts an incorrect answer, its activated
visual tokens according to the attention map is reasonable.
This suggests that TwigVLM’s occasional failures may not
be caused by the visual token pruning, but due to the limi-
tations of the base VLM. These findings verify and explain
the effectiveness of the TTP strategy.

Self-speculative decoding. To better understand the decod-
ing behavior of the SSD strategy in TwigVLM, we show 8
examples of generated long responses on MM-Vet. From
the results in Figure 3, we have two key observations: (i) In
general, the proportion of accepted tokens (in green) sur-
passes that of the corrected tokens (in black) by the tar-
get model, indicating that TwigVLM achieves significant
speedup through its high token acceptance rate. (ii) The
majority of easy tokens, such as those associated with gram-
mar and punctuation, are readily accepted. In contrast, the
hard tokens, which often demand complex reasoning, have
a high probability to be corrected by the target model. In
practice, the proportion of easy tokens is usually larger than
the hard ones, which confirms the the effectiveness of our
SSD strategy in accelerating the decoding stage while main-
taining the generation quality.
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Q: What color are the 
pants?

White Black Red  P

Q: Where is the 
     skater?

Park Street Parking lot  P

Q: What is the person 
near the man wearing?

Dress Skis Gloves  P

Q: What is the man 
on the left holding?

Remote control Remote control Wii controller P

Q: Which color do 
      the pants have?

Black Black Gray P Q: What is on the  
     surfboard?

Surfboard Logo Flower P

Q: What is on the 
     sink?

Towel Toilet paper Soap P Q: What is that 
      person holding?

Cat Cat Camera P

Q: What is the name 
     of the airline?

Austrian airlines Austrian Austrian arrows P Q: What is the name 
     of the house boat?

Kandara Glendra Kiandra P

Q: What type of  
     product is this for?

Advertisement Cell phone Lg P Q: Who is sponsoring 
     the team?

Nohing Switzerland Suisse P

Q: What is the 
      blender full of?

Liquid Ice Ice PP Q: What kind of 
     cognac is this?

VSOP ABK6 ABK6 PP

Q: What is parked 
     alongside the barn?

Truck Fire truck Fire truck Q: What are the animals 
to the left of the people?

Giraffes Giraffes   Giraffes
 LLaVA-7B: Fire truck LLaVA-7B:  Giraffes

image, prompt FastV [2] VisionZip [21] TwigVLM image, prompt FastV [2] VisionZip [21] TwigVLM

Figure 2. Visualization of attention maps and predictions for FastV [2], VisionZip [21], and our TwigVLM on the examples chosen from
the GQA [7] and TextVQA [18]. For the examples in the last row, we additionally provide the predictions from the LLaVA-1.5-7B.
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Q: Is that wine in the 

background?

A: No, there is no wine in the 

background. The image 

features a pizza and a soda in 

a box, along with a laptop 

and a potted plant.

Q: what is the green logo on 

the car?

A: The green logo on the car 

is the Monster Energy logo.

Q: Can you give a short 

introduction to this painting?

A: The painting is a famous 

artwork by Vincent Van Gogh, 

featuring a night scene with a 

sky filled with stars. The scene 

is set in a village, with a church

 steeple visible in the distance. The painting captures the 

beauty of the night sky and the tranquility of the village, 

creating a serene atmosphere. The combination of the 

stars, the church steeple, and the village buildings make 

this painting a captivating representation of the artist's 

vision.

Q: Can you give a short 

introduction to this person?

A: The image features a 

statue of an old man with a 

long beard, sitting and 

holding a staff in his hands. 

The statue appears to be a 

representation of a wise or respected figure, possibly a 

religious leader or a historical figure. The statue is situated 

in front of a building, possibly a temple or a museum, and it 

serves as a symbol of wisdom, knowledge, or spiritual 

guidance.

Q: Provide a detailed 

description of the given image.

A: The image features a dining 

table with a white plate filled 

with a variety of breakfast 

foods. The plate contains eggs, 

toast, and a selection of fruits, 

including strawberries and blueberries. There are also 

sausages on the plate, adding to the delicious assortment 

of breakfast items. A cup of coffee is placed next to the 

plate, completing the breakfast setup. A fork is positioned 

on the table, ready for use. The table setting is inviting and 

perfect for a morning meal.

Q: Can you give a short 

introduction to this movie?

A: The movie "The Dark Knight" 

is a 2008 superhero film 

directed by Christopher Nolan. It 

is the second installment in the 

Batman film series and stars

Heath Ledger as the Joker, along with Christian Bale as 

Batman/Bruce Wayne, Michael Caine as Alfred, and Maggie  

Gyllenhall as Rachel Dawes. The film follows Batman as he 

battles the Joker, a psychopathic criminal mastermind who 

seeks to take over Gotham City. The movie is known for its 

intense action sequences, complex plot, and the iconic 

performance of Heath Ledger as the Joker.

Q: Is there any reflection of 

zebra in water?

A: Yes, there is a reflection of 

the zebra in the water.

Q: Introduce the player on 

the right.

A: The player on the right is 

named Kaká, and he is 

wearing a jersey with the 

number 8.

Figure 3. Examples of the generated responses using the self-speculative decoding (SSD) on MM-Vet [22], with accepted tokens by the
target model being highlighted in green.

D. Evaluation Benchmarks
In this section, we provide a brief overview of the bench-
marks used in our experiments.
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GQA [7] is a benchmark that focuses on visual scene under-
standing and reasoning, leveraging scene graphs, questions,
and images. It incorporates spatial relationships and object
properties, posing challenges for models to perform accu-
rate visual reason under complex visual environments.

MMBench [15] adopts a hierarchical evaluation approach
with three levels: Level-1 (perception and reasoning),
Level-2 (six sub-abilities), and Level-3 (20 specific dimen-
sions). This structured framework allows for a comprehen-
sive evaluation of model performance, making it an effec-
tive tool for assessing a wide range of visual understanding
capabilities. We denote it as “MMB” in the main text.

MME [4] assesses models across 14 subtasks that probe
both perceptual and cognitive skills. Carefully crafted
instruction-answer pairs guarantee a fair and comprehen-
sive evaluation of a model’s multimodal performance. The
final score reported on this benchmark is the summation of
both the perception and cognition scores.

ScienceQA [16] spans multiple scientific fields, including
natural, language, and social sciences, with questions orga-
nized into 26 topics, 127 categories, and 379 skills. It eval-
uates a model’s multimodal comprehension, multi-step rea-
soning, and interpretability, providing a rich testbed for as-
sessing scientific knowledge application in visual contexts.
In our experiments, we only evaluate the performance on
the samples with images, denoted as “SQAI” in the experi-
mental tables.

VQA-v2 [5] is a large-scale benchmark featuring 265K im-
ages of real-world scenes and objects, with each image
paired with open-ended questions and 10 human-provided
ground truth answers.

TextVQA [18] tests a model’s ability to process and rea-
son about text embedded within images. By requiring the
integration of visual and textual information, it serves as
a critical benchmark for evaluating text-based reasoning in
visual contexts. To save space, we denote it as “VQAT” in
the experimental tables.

POPE [10] targets object hallucination evaluation by pos-
ing binary questions about object presence in images. It
employs metrics such as Accuracy, Recall, Precision, and
F1 score across three sampling methods. The reported score
is calculated by the mean accuracy over the three indicators:
adversarial, random, and popular.

MMMU [24] challenges models with tasks requiring
college-level expertise and reasoning skills. It comprises
11.5K questions drawn from exams, quizzes, and text-
books, spanning six key disciplines: Art & Design, Busi-
ness, Science, Health & Medicine, Humanities & Social
Science, and Tech & Engineering. Featuring 30 subjects
and 183 sub-fields, MMMU involves diverse image types,
e.g., charts, diagrams, and chemical structures, demanding

advanced perceptual and domain-specific reasoning abili-
ties akin to those of human experts.

MM-Vet [22] evaluates six fundamental vision-language
capabilities: recognition, OCR, knowledge, language gen-
eration, spatial awareness, and mathematical reasoning. It
examines 16 specific combinations of these skills through
quantitative metrics, offering a nuanced perspective on a
model’s proficiency in tackling intricate multimodal tasks.

TGIF-QA [8] adapts image question answering to the video
domain, specifically targeting GIFs. With 165K question-
answer pairs, it introduces tasks such as counting repeti-
tions, identifying repeating actions, detecting state transi-
tions, and frame-specific QA. These tasks demand detailed
spatio-temporal analysis, making it a rigorous test for video
comprehension. We employ GPT-3.5-turbo to assist in the
evaluation of accuracy (same for the following three bench-
marks). We denote it as “TGIF” in the main text.

MSVD-QA [20] is built on the Microsoft Research Video
Description (MSVD) dataset [1], which includes 1,970
video clips and about 50,500 QA pairs. Its open-ended
questions span five types—what, who, how, when, and
where—offering a diverse and widely used evaluation for
video question answering and captioning tasks. We denote
it as “MSVD” in the main text.

MSRVTT-QA [1] comprises 10K video clips and 243K QA
pairs, presenting a complex challenge due to the need to
process both visual and temporal information. Like MSVD-
QA, it features five question types, testing a model’s ability
to understand and reason about dynamic video content. We
denote it as “MSRVTT” in the main text.

ActivityNet-QA. ActivityNet-QA [23] offers 58K human-
annotated question-answer pairs across 5.8K videos from
the ActivityNet dataset. Its questions include motion, spa-
tial relationships, and temporal dynamics, requiring long-
term spatio-temporal reasoning and making it an popular
benchmark for evaluating advanced video understanding
capabilities. We denote it as “ActivityNet” in the main text.
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