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Figure 1. Results on the SODA-D dataset. We can see that our DM-EFS outperforms both the YOLOv7 base model and recent SOD
method CFINet. Note, green and red boxes are ground-truths and predictions respectively, and ‘ignore’ regions are masked out. All the
results are shown without class labels for ease in visualization and performance comparisons.

1. Performance Comparisons

1.0.1. SODA-D Dataset

In the main paper, Fig. 5 shows an example of our quali-
tative results on the SODA-D [2] dataset (for quantitative
comparisons on the SODA-D dataset, please refer to Ta-

ble 1 in the main paper). We now show additional quali-
tative results and comparisons with SOD baseline method
CFINet [12] and our base model YOLOV7 [10]. The results
(without class labels for ease in visualization) are shown in
Fig. | which clearly highlight the better performance of our
DM-EFS method over the baselines.



J (NN s O T\
YOLOV7 (Base)

CFINet [12]

Figure 2. Results on the VisDrone dataset. We can see that our DM-EFS outperforms both the YOLOvV7 base model and recent SOD
method CFINet in detecting small objects robustly. Note, green and red boxes are ground-truths and predictions respectively. The results
are for 640x 640 images but are shown on original images without class labels for ease in visualization.

Method | Venue | APt APso 1 AP;st AP, AP} AP, AP,
Faster-RCNN [8] | NIPS’15 13.24 23.41 13.51 00.01 00.04 07.44 26.67
RetinaNet [6] ICCV’'17 | 08.70 15.51 08.90 00.11 00.30 02.61 15.14
Sparse-RCNN [9] | CVPR21 | 06.85 12.90 06.11 00.21 01.14 04.34 11.49
CFINet [12] ICCV’23 |  14.60 27.80 14.01 00.20 02.55 11.66 25.47
ESOD [7] TIP24 23.61 41.89 23.38 - - - -

YOLOvV7 (Base) | CVPR'23 | 27.60 47.81 27.30 01.40 08.11 25.42 43.63
DM-EFS (Ours) - 29.71 51.80 29.30 02.94 10.88 28.54 44.49

Table 1. SOD performance comparisons on the VisDrone dataset using additional metrics, AP,,, AP;, APy, and AP,,, customized for small

<9

object detection. The results are generated for 640640 resolution input images. ‘1" means higher is better. ‘-> means results not available.

1.0.2. VisDrone Dataset

For the VisDrone [14] dataset, Fig. 6 (bottom-row) in the
main paper shows an example of qualitative comparisons
between our DM-EFS and baselines methods, YOLOv7
base model and recent SOD method CFINet. We now show
additional qualitative comparisons in Fig. 2, and the results
again show our better performance over the baselines for

detecting small objects.

In the main paper, we also show quantitative compar-
isons in Table. 2 using AP, APsy, and AP75 metrics. We
now show additional comparisons using additional metrics,
namely AP,,, AP,, AP, AP,, which are AP metrics com-
puted for very tiny (size € (2, 8)), riny (size € [8, 16)), small
(size € [16, 32)), and medium (size € [32,64)) sized objects



Method ‘ Venue ‘pedestrian’ ‘car’ ‘tricycle’ ‘motor’ ‘people’
Faster-RCNN [8] NIPS’15 06.11 33.51 08.54 07.01 04.39
RetinaNet [6] ICCV’17 04.41 30.19 03.44 04.10 02.65
Sparse-RCNN [9] | CVPR’21 03.91 19.93 03.23 04.54 03.77
CFINet [12] I1CCV’23 11.61 39.74 08.88 10.40 07.62
ESOD [7] TIP’24 18.81 53.30 15.81 18.70 11.62
YOLOv7 (Base) CVPR’23 2091 55.12 21.82 22.70 15.91
DM-EFS (Ours) - 24.60 57.33 23.21 25.84 17.95
Method ‘ Venue ‘van’ ‘awning-tricycle’ "bicycle’ ‘truck’ ‘bus’
Faster-RCNN [8] NIPS’15 19.12 05.33 03.49 16.82 27.84
RetinaNet [6] ICCV’17 11.71 02.37 00.90 11.71 15.60
Sparse-RCNN [9] | CVPR’21 09.45 02.66 01.54 06.59 10.81
CFINet [12] ICCV’23 19.97 05.11 04.27 14.20 24.45
ESOD [7] TIP’24 31.41 09.39 06.37 26.41 44.72
YOLOV7 (Base) CVPR’23 36.22 12.50 11.72 32.27 46.86
DM-EFS (Ours) - 37.84 13.33 14.19 33.04 50.64

Table 2. Class-wise SOD performance comparisons in terms of AP on the VisDrone dataset with ten classes (divided into two tables as
shown above with five classes each). The results are generated for 640 x 640 resolution input images.

Method ‘ Venue ‘ APsoT  fpsT
Deformable-DETR [15] ICLR’21 | 48.07 14.51
RT-DETR [13] CVPR’24 | 49.79 42.04
YOLOV7 (Base) CVPR’23 | 47.81 39.71
DM-EFS (Ours) - 51.80 38.24

Table 3. Comparisons with transformer-based detection methods
on the VisDrone validation set with 640 x 640 input images.

respectively. The results are shown in Table 1, which sup-
port the qualitative results showing the better performance
our DM-EFS over the baselines. We also compute class-
wise AP metrics for the VisDrone dataset, shown in Table 2.
As the results show, for all the classes, our DM-EFS gener-
ates the best SOD results among all the methods. While
our DM-EFS is CNN-based using YOLOV7 base detection
model (by default), we also compare it with transformer-
based general detection models, Deformable-DETR [15]
and RT-DETR [13], as transformer-based detection models
provide robust and competitive performance. As shown in
Table 3, our DM-EFS still provides state-of-the-art results
compared to the recent transformer-based methods (while
being slightly inferior in terms of fps performance.)

1.0.3. DarkFace Dataset

For our SOD performance comparisons, in the main pa-
per, we also use the DarkFace [11] dataset. It is a suit-
able candidate for testing diverse SOD conditions as it con-
sists of low-light images for face detection (i.e., only face
class) with pre-dominantly tiny faces. This can be observed
from the object size histograms for the DarkFace dataset

for 640x640 images shown in Fig. 4, which shows an av-
erage object size of 11.09px. For reference, the object size
histograms for the VisDrone SOD dataset for 640x 640 im-
ages are shown in Fig. 5, which shows an average object
size of 18.97px. This means that the average object size of
the DarkFace dataset is even smaller than that of the Vis-
Drone dataset, making it a suitable choice for performance
comparisons on a diverse SOD dataset.

In the main paper, Fig. 6 (top-row) and Table 4 show the
qualitative and quantitative comparisons for the DarkFace
dataset. We now show some additional qualitative results in
Fig. 7. As observed from the results in the main paper, the
results in Fig. 7 also highlight that our DM-EFS can handle
diverse SOD conditions, and is able to detect small faces
quite more robustly than compared to the baseline methods.

2. Additional Details

2.0.1. Visualization of Shallow Features

Fig. 3 visualizes the backbone features in our DM-EFS, and
we can observe that with shallow features included (which
basically is our proposed EFS form), more small objects
are captured in the backbone features as shallow features
though abstract, are of higher resolution which allows more
feature representation capability for small objects.

2.0.2. DarkFace Training

Following [3], before training on the DarkFace dataset, we
first pre-train our model on synthetic low-light COCO [5]
dataset, which is obtained using the low-light transforma-
tion process proposed in [1] to render low-light COCO im-
ages from normal well-lit COCO images. Note that, during



Figure 3. For the input image (left) taken from the VisDrone dataset, backbone features in our DM-EFS without (middle) and with (right)
shallow features included (which essentially means our EFS form).
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Figure 4. From left-to-right, normalized histograms showing distributions of true sizes 3, true min sizes Smin, and true max sizes Smax for
the DarkFace training data. Note that, the histograms are obtained for the input resolution of 640X 640.
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Figure 5. From left-to-right, normalized histograms showing distributions of true sizes 3, true min sizes Smin, and true max sizes Smax for
the VisDrone training data. Note that, the histograms are obtained for the input resolution of 640x 640.
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Figure 6. Illustration of the low-light transformation process [1] employed in generating synthetic low-light COCO dataset that is used in
the pre-training involved in the DarkFace dataset training scheme [3].

the pre-training step, for ease in the training process, we dis- min and max object sizes by setting Ay to 0 which con-
able our DFM design and set all the control signals for the trols the corresponding loss term. After pre-training, in the
neck and head multiplexers to 1. We also disable learning main training step, we then follow our proposed DM-EFS
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Figure 7. Results on the DarkFace dataset. We can see that our DM-EFS outperforms both the YOLOv7 base model and recent SOD
method CFINet in detecting small faces robustly. Note, green and red boxes are ground-truths and predictions respectively. The results are
for 640640 images but are shown on original images for ease in visualization.

training procedure normally.

The process is also illustrated in Fig. 6 for reference.
There are primarily three steps: (1) ‘Unprocessing’ the
normal well-lit RGB images to their corresponding RAW
form, (2) Low-light degradation of the RAW images (ob-
tained in the previous step) via illumination reduction and
non-uniform rrandom noise addition, and (3) ‘Processing’
the degraded low-light RAW images back to RGB form
(see [1, 3] for further details).

2.0.3. Regression based Min-Max Sizes Prediction

As described in the main paper, to learn min and max object
sizes prediction, we cast them as single label classification
problems, and predict them with a two-branch classification
network in the control module ®¢ (see Fig. 3 in the main
paper showing our model architecture).

We now discuss an alternate way to cast them as regres-
sion problems. For this, we simply change the output size of
the last FC layer of the two-branch classification network to
1 (with sigmoid activation), and re-formulate the min-max

object size prediction loss Ly, to perform regression by:

‘CSZP = )‘SZP [”S;;in - §min||2 + ”S:;ax - §max||2}7 (1)

*

where 57, and 5}, are normalized values of true min size
and true max size, Smin and Spax, obtained by §%; = Smin/$

and 8%,, = Smax/S respectively, where 5 is the max ob-
ject size parameter. Therefore, both &%, and 3}, are in

[0,1], which means that with the loss re-formulation de-
scribed above, we also predict normalized min and max ob-
ject sizes s¥. and s}, in the range of [0, 1]. Hence, we ob-
tain the final predicted min and max object sizes, spi, and
Smax, by simply de-normalizing them, i.e., Smin = Spi, S
and Smax = Spax © S-

With this above regression based design, the overall
computational complexity is lesser than compared to the
classification based design (which potentially can provide a
higher inference fps speed to our DM-EFS). However, in all
our trails, we found the above regression based design to be

less effective and accurate than the proposed classification



based design. This is because for SOD datasets, majority
of the objects are of very small size say 10-20px (as can be
seen in Figs. 4 and 5), which when normalized, become ex-
tremely small values (close to 0). Since the regression based
loss described above is affected by the magnitude of object
sizes, this creates a mode collapse (local minima) like situ-
ation when majority of the min-max sizes predictions made
by our model are close to 0. Using a classification based de-
sign bypasses this issue since it is not affected by the mag-
nitude of object sizes. Furthermore, using Focal Loss [6]
based classification helps in addressing the class-imbalance
problem created by long-tail distributions of true min and
max object sizes (see Figs. 4 and 5).

Hence, to sum up, for learning min and max object sizes
prediction, we propose to use a classification based design
— which even though has a higher computational cost than
the regression based design — is more effective in learning
min and max object sizes correctly.

2.0.4. Limitations and Future Wok

While our DM-EFS has achieved SOTA performance on
various SOD benchmarks, there still remains a few issues.
For e.g., handling more difficult small objects such as of
very small size (<8px) or with extreme inter-class similar-
ities [4] remains a challenge, since they may not be ade-
quately represented in the shallow features that contributes
to our SOD performance.

Our DM-EFS also employs a control module that has its
own inference overhead. For e.g., on the VisDrone dataset,
we obtain 38.24 inference fps or 26.15 ms/image runtime, in
which the control module takes 1.79 ms/image (and, the rest
is taken by the detection modules). While the added over-
head from the control module is relatively small, improving
our overall inference fps is another area of improvement,
and addressing this will be part of our future work.

References

[1] Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen,
Dillon Sharlet, and Jonathan T Barron. Unprocessing images
for learned raw denoising. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 3,4, 5

[2] Gong Cheng, Xiang Yuan, Xiwen Yao, Kebing Yan, Qinghua
Zeng, Xingxing Xie, and Junwei Han. Towards large-scale
small object detection: Survey and benchmarks. /IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2023.
1

[3] Ziteng Cui, Guo-Jun Qi, Lin Gu, Shaodi You, Zenghui
Zhang, and Tatsuya Harada. Multitask aet with orthogonal
tangent regularity for dark object detection. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 2553-2562, 2021. 3,4, 5

[4] Yecheng Huang, Jiaxin Chen, Di Huang, and NA NA.
Ufpmp-det: Toward accurate and efficient object detection
on drone imagery. In Proceedings of the AAAI conference on
artificial intelligence, pages 1026-1033, 2022. 6

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision—-ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740-755. Springer, 2014. 3

[6] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollér. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980-2988, 2017. 2, 3, 6

[7] Kai Liu, Zhihang Fu, Sheng Jin, Ze Chen, Fan Zhou,
Rongxin Jiang, Yaowu Chen, and Jieping Ye. Esod: Effi-
cient small object detection on high-resolution images. /EEE
Transactions on Image Processing, 2024. 2, 3

[8] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 2, 3

[9] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chen-
feng Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan
Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end ob-
ject detection with learnable proposals. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 14454-14463, 2021. 2, 3

[10] Chien-Yao Wang, Alexey Bochkovskiy, Hong-Yuan Mark
Liao, and NA NA. Yolov7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7464-7475, 2023. 1

[11] Wenhan Yang, Ye Yuan, Wenqi Ren, Jiaying Liu, Walter J.
Scheirer, Zhangyang Wang, and et al. Advancing image
understanding in poor visibility environments: A collective
benchmark study. IEEE Transactions on Image Processing,
29:5737-5752, 2020. 3

[12] Xiang Yuan, Gong Cheng, Kebing Yan, Qinghua Zeng, and
Junwei Han. Small object detection via coarse-to-fine pro-
posal generation and imitation learning. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 6317-6327,2023. 1,2, 3,5

[13] Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei,
Guanzhong Wang, Qingqing Dang, Yi Liu, and Jie Chen.
Detrs beat yolos on real-time object detection. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 16965-16974, 2024. 3

[14] Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng
Fan, Qinghua Hu, and Haibin Ling. Detection and tracking
meet drones challenge. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 44(11):7380-7399, 2021. 2

[15] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 3



	Performance Comparisons
	SODA-D Dataset
	VisDrone Dataset
	DarkFace Dataset


	Additional Details
	Visualization of Shallow Features
	DarkFace Training
	Regression based Min-Max Sizes Prediction
	Limitations and Future Wok



