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6. Related Work
Vision-Language Pretrained Models (VLMs) form the
backbone of modern large-scale multimodal retrieval sys-
tems. These models are generally categorized into gen-
erative, embedding, or hybrid models. Generative models
frame retrieval tasks as autoregressive generation [38, 69],
while embedding models capture the global representation
of each modality, showing higher effectiveness for cross-
modal retrieval and open-set classification [25, 50, 63]. Hy-
brid models like BLIP [33, 34] and MM-GEM [42] define
a text encoder with a decoder LLM, balancing both genera-
tive and embedding functionalities.

Modality Unification has been a longstanding objective
in the quest for a universal multimodal retrieval system.
Approaches range from jointly training image and text en-
coders, as in CLIP [50], to sharing parameters between text
encoders and decoders, as seen in BLIP [33, 34] and In-
ternVL [9]. Some methods, like CoCa [65], further split
the decoder into uni-modal and multi-modal components.
However, none of these approaches focus on unifying or
sharing weights between the image encoder and the text en-
coder. FROMAGe [10] grounds a language model in the
visual domain by fine-tuning input and output linear lay-
ers while keeping the core language model frozen, using
image features from a pretrained encoder. In contrast, our
approach generates image features within the LLM itself by
inputting a concatenation of the image encoder outputs and
designed instructions, utilizing a shared backbone across
mixed modalities.

Contrastive Learning has become the de facto approach
for learning joint representations across multiple modali-
ties [3, 5, 7, 10, 11, 15, 26, 51, 55, 57, 66]. The widely
adopted InfoNCE loss [7, 47] treats each positive or neg-
ative pair equally, making it task-unaware and sensitive to
false positive and negative pair data. This has led to var-
ious adaptations, including [11], to address these issues.
A related work is [57], which introduces a weighted ver-
sion of InfoNCE, though these weights are predefined and
deterministic at the sample level, limiting their ability to
fine-tune attention to different similarity scores in a multi-
task setting. In contrast, our M3T-UEM framework, in-
spired and generalizing the recent flexible contrastive learn-
ing techniques [6, 48], employs a task-aware contrastive
loss that jointly optimizes similarity-score-level weights
and LLM model parameters, enabling more granular and

adaptive control over contrastive learning in multimodal
contexts.

6.1. Baselines
Baselines: We survey a breadth of contemporary arts suit-
able for comparison studies. M-BEIR retrieval is com-
pared against the UniIR baselines [60]. Additionally, we
incorporate the evaluation of recent LMM based methods
NV-Embed [31], MM-Embed [35] and LLaVA based fine-
tuned methods wherein LLaVA-E uses a similar EOS em-
bedding for summarization whereas LLaVA-P is instructed
for summarization using the last token. For the ICinW
benchmark, we incorporate MM-GEM [42] as a baseline
with more zero-shot comparisons against VLM2VEC [28],
LLM2CLIP [23] and more [27, 41, 68]. We further incorpo-
rate ViT-g in multiple evaluations in order to elucidate the
improvements made using our architecture, while leverag-
ing it as our vision encoder.

7. Supplement for Task-Aware Contrastive
Learning

7.1. Derivations to Handle Multiple Positive Pairs
To handel multiple positive pairs, we assume there are P

positive pairs for each data point. Furthermore, to more
closely connect positive data pairs, we assume the data from
the same set of positive pairs share the same set of neg-
ative data pairs. Consequently, we define the task-aware
contrastive loss with multiple positive pairs as Lcon ↭
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with similarity scores s
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Now introducing an auxiliary random variable uij for each
(i, j)-pair leads to an augmented likelihood distribution, de-
fined as

p(D, {uij}|{w̄ωi,ωk}, {w̃ik})
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Introducing Gamma priors for the weights {w̄→
ωi,ωk , w̃ik},

denoted as p(w̄→
ωi,ωk) = Gamma(aω , bω ) and p(w̃ik) =

Gamma(a, b), we have the joint posterior distribution for
{uij}, {w̄→

ωi,ωk}, and {w̃ik} as
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Based on the joint distribution (6), the posterior distribution
for each random variable can be directly read out, as
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7.2. Stochastic Expectation Maximization
Stochastic expectation maximization (sEM) is a stochastic
version of the standard EM framework, which is introduced
to efficiently learning a probability model with latent vari-
ables when dealing with large data.

Specifically, let p(x, z;ω) represent a probability model,
where each observation x (corresponding to the multi-
modality input data in our case) has a corresponding latent
variable z (corresponding to {ui}, {w̄ωi,ωk} and {w̃ik} in
our case), with the global model parameter ω (correspond-
ing to the LLM parameter in our case). To learn the cor-
responding model, one standard paradigm is via maximum
likelihood estimation, as

max
ω

∑

i

log

∫
p(xi, zi;ω)d zi .

Due to the infeasibility of the integration, direct opti-
mization of the likelihood is infeasible. The EM algorithm
resolves this problem by optimizing an alternative objective

function, a lower bound of the likelihood, by introducing an
auxiliary distribution q(z |x) for the latent variable z:

max
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∫
q(zi |xi) log

p(xi, zi;ω)

q(zi |xi)
d zi .

Consequently, the EM algorithm alternative between the
following two steps: at iteration t

• Expectation: Conditioned on ωt→1, estimate q(zi |xi)
for all training data.

• Maximization: Conditioned on the new estimated
q(zi |xi) and ωt→1, maximize the following objective
function to update ωt→1:

ωt = argmax
ωt→1

∑

i

Eq(zi |xi) [log p(xi, zi;ωt→1)] . (7)

Stochastic EM is an extension of EM at a big-data
setting, where it is computationally infeasible to estimate
q(zi |xi) for all the data. To this end, one version of
stochastic EM use samples from the posterior distribution
p(zi |xi;ω) to replace q(zi |xi) for a minibatch of data
at each iteration, and approximate the expectation in (7)
with sample averages, thus alternating between the follow-
ing two steps:
• Expectation: Conditioned on ωt→1, sample zi ↓
p(zi |xi;ωt→1) for the current minibatch of data.

• Maximization: Conditioned on the sampled zi’s and
ωt→1, maximize the following objective function to up-
date ωt→1:

ωt = argmax
ωt→1

∑

i

log p(xi, zi;ωt→1).

Apply the framework to our setting, we arrive at Algo-
rithm 1 to optimize our proposed M3T-UEM framework.

7.3. Hyper-parameters Settings for Algorithm 1
We list the hyper-parameters to optimize Eq. (1), which are
selected based on the validation set performances, as illus-
trated in Table 9.

Table 9. Hyper-parameters of Stochastic EM for Learning M3T-
UEM

Hyper-parameter Value
iter 5
M # of samples in a batch (= N )

aω , bω in Eq. (3) 5
a, b in Eq. (4) 5

8. Designated Instructions
The detailed instructions applied to LAION 400M [53],
CC3M [54] for creating the 8 multi-modal tasks are pre-
sented in Table 10. Note for M-BEIR [60] we use the in-
structions provided by the dataset itself [60].



Table 10. Designated instructions for unifying different datasets – LAION 400M [53], CC3M [54], and M-BEIR [60] to create rich multi-
modal retrieval tasks.

Task Designed Instruction
1. Iq ↔ Tt Retrieve the description for a given image, picking randomly from one of the follow-

ing each time:
• Describe the image shown here.
• What is the caption of the image.
• Write a brief caption for the image.

2. Tq ↔ It Identify the matching image for a given description, picking randomly from one of the
following each time:
• Pick the image that matches this description.
• What is the image that is described by the caption here.
• Choose the correct image using this caption as the descriptive.

3. Iq ↔ It Match a similar image based on a provided image reference, picking randomly from
one of the following each time:
• Pick the image that matches this image.
• What is the image that looks like the image here.
• Choose the correct image using this image as the reference.

4. Iq ↔ (I, T )t Retrieve the correct image, caption pair for a given image, picking randomly from
one of the following each time:
• Pick the image-caption pair that matches this image.
• What is the image-caption pair that looks like the image here.
• Choose the correct image-caption pair using this image as the reference.

5. (I, T )q ↔ It Identify the matching image from a image, caption pair, picking randomly from one
of the following each time:
• Pick the image that matches this image-caption pair.
• What is the image that looks like the image-caption pair here.
• Choose the correct image using this image-caption pair as the reference.

6. (I, T )q ↔ Tt Retrieve the matching description from a image, caption pair, picking randomly from
one of the following each time:
• Pick the caption that matches this image-caption pair.
• What is the description that looks like the image-caption pair here.
• Choose the correct text using this image-caption pair as the reference.

7. Tq ↔ (I, T )t Identify the correct image, caption pair for the given description, picking randomly
from one of the following each time:
• Pick the image-caption pair that matches this caption.
• What is the image-caption pair that looks like the caption here.
• Choose the correct image-caption pair using this caption as the reference.

8.
(I, T )q ↔ (I, T )t

Match a similar image, caption pair using this image, caption as reference, picking
from one of the following each time:
• Pick the image-caption pair that matches this image-caption pair”.
• What is the image-caption pair that looks like the image-caption pair here.
• Choose the correct image-caption pair using this image-caption pair as the reference.



Table 11. Zero-Shot Image Classification. We include additional zero-shot evaluation metrics using the CLIP benchmark [24] and
compare our model’s performance against the CLIP ViT-g-14 across seven datasets. For the DSprites benchmark, we report the mean score
across sub-tasks, including predictions of shape, scale, x- and y-positions, and orientation.

Method STL10 [12] CLEVR Counts [29] CLEVR Distance [29] Sun397 [62] SVHN [45] DMLab [67] DSprites (Mean) [43] Average

OpenCLIP ViT-g-14 98.9 19.5 17.1 69.8 51.9 18.1 11.9 41.02
M3T-UEM 95.5 17.1 19.9 74.6 58.5 20.8 10.8 42.46

Table 12. Ablation: Performance comparison across different
variants of M3T-UEM with standard contrastive loss trained for
6.5k steps using varying numbers of EOS tokens. Note different
from the main results, we use the NDCG@10 metric for this abla-
tion study taken from our earlier evaluations. Thus, the numbers
are not directly comparable to the main results.

Task Dataset EOS=1 EOS=4 EOS=16

(Tq → Tt)
VisualNews 40.6 41.4 41.3
MSCOCO 58.2 61.6 63.0
Fashion200K 5.9 6.3 6.9

(Iq → Tt) WebQA 23.1 23.8 23.4

(Tq → (I, T )t)
EDIS 30.0 30.4 30.3
WebQA 36.0 35.9 36.8

(Iq → Tt)
VisualNews 38.0 41.7 44.3
MSCOCO 22.8 22.5 24.9
Fashion200K 75.5 75.0 75.2

(Iq → It) NIGHTS 50.0 48.4 50.8

((I, T )q → Tt)
OVEN 62.7 59.9 60.4
InfoSeek 32.8 35.3 40.1

((I, T )q → It)
FashionIQ 34.7 37.8 42.0
CIRR 89.4 91.0 92.1

((I, T )q → (It, Tt))
OVEN 71.5 75.3 80.4
InfoSeek 62.7 65.2 68.7

Average 42.3 43.3 44.9

9. Additional Results
9.1. Zero-Shot Image Classification
We report additional zero-shot image classification evalua-
tions in Table 11, where we compare against the pre-trained
ViT-g-14 from open-clip. The datasets include STL10 [12]
for object recognition, CLEVR Counts and CLEVR Dis-
tance [29] for reasoning, SUN397 [62] for scene classifica-
tion, SVHN [62] for digit recognition, DMLab [67] for rein-
forcement learning environments and DSprites [43], which
involves shape, scale, position and orientation prediction.
Again, M3T-UEM demonstrates strong performance across
various benchmarks, where our model achieves a compet-
itive mean score outperforming open-clip, showcasing its
robustness in diverse zero-shot settings. ¶

9.2. Compositionality
We evaluate M3T-UEM on compositionality benchmarks,
as presented in Table 13. Leveraging the pretrained LLM’s

¶Independent evaluations were conducted separately for both models
using the repository: https://github.com/LAION-AI/CLIP benchmark

world knowledge of object relationships, attributes, and
contextual hierarchies, M3T-UEM demonstrates robust per-
formance across the SugarCrepe datasets, particularly ex-
celling in text-based compositional variations. On tasks
such as “Replace Relation” and “Add Object,” M3T-UEM
outperforms OpenCLIP ViT-g-14, capturing nuanced rela-
tional shifts with 81.93% text retrieval accuracy compared
to OpenCLIP’s 68.35% on “Replace Relation”. While both
models achieve high image retrieval accuracy, M3T-UEM
exhibits superior comprehension of complex text queries.
Similarly, in WinoGround, M3T-UEM surpasses ViT-g-14
in text retrieval while maintaining comparable image re-
trieval performance. These results highlight M3T-UEM’s
enhanced capacity for relational reasoning, demonstrating
the advantage of LLM-based alignment in handling intri-
cate compositional challenges.

Table 13. Compositionality: The image-caption-matching accu-
racy (%) for the SugarCrepe (SC) and WinoGround datasets.

M3T-UEM ViT-g-14Dataset Tq → It Iq → Tt Tq → It Iq → Tt

SC - Replace Obj. 100.0 96.6 100.0 96.0
SC - Replace Rel. 100.0 81.9 100.0 68.3
SC - Replace Att. 100.0 88.2 100.0 80.7
SC - Swap Obj. 100.0 66.9 100.0 60.4
SC - Swap Att. 100.0 70.6 100.0 65.5
SC - Add Obj. 100.0 91.5 100.0 85.8
SC - Add Att. 100.0 83.5 100.0 80.9
WinoGround 13.0 34.5 11.2 28.0

Average 89.12 75.91 88.90 71.51

10. Additional “EOS” tokens
In the following, we conduct a thorough ablation over the
number of “EOS” tokens and the resulting performance
over the M-BEIR dataset. For this study, we conduct the
second stage training for 6.5k steps and evaluate over the
M-BEIR benchmark. The Table 12 illustrates the perfor-
mance of M3T-UEM variants with varying numbers of EOS
tokens across multiple modalities and tasks, including text-
to-image, image-to-text, and multimodal transformations.
The results highlight that increasing the number of EOS to-
kens consistently improves the average performance met-
rics. This improvement can be attributed to the rich and di-
verse nature of multimodal information, where each modal-
ity – text, image, or a combination – encodes distinct, com-

https://github.com/LAION-AI/CLIP_benchmark


plex representations. Using multiple EOS tokens allows the
model to better capture and align these representations dur-
ing contrastive learning, effectively disentangling modality-
specific and shared features. This flexibility is crucial for
tasks requiring nuanced understanding and retrieval, such
as identifying relationships across modalities or generating
contextually aligned outputs. As the complexity of the en-
coded information increases, the additional tokens provide
the capacity needed for robust multimodal integration, en-
suring higher performance across datasets and tasks.


