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1. Preliminaries
Text-to-image (T2I) synthesis methods, such as Stable Dif-
fusion [13], generate images from textual descriptions (ct)
using diffusion models. These models operate in either
the pixel or latent domain, with latent-space methods being
computationally more efficient. Our work leverages Sta-
ble Diffusion, which employs a latent-space formulation for
scalable and effective image synthesis. Below, we briefly
outline the key components of Stable Diffusion and Con-
trolNet [19], a framework enabling controlled image gener-
ation through additional task-specific inputs.

In diffusion models, Gaussian noise ϵ ∼ N (0, I) is in-
crementally added to an initial image x0 to produce a noisy
sample xt at timestep t, as defined by:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (1)

where αt = 1−βt and ᾱt =
∏t

s=1 αs, following a variance
schedule {βt}. A denoising neural network ϵθ is trained to
predict the noise ϵ by minimizing the objective:

L = Ex0,t,ϵ∼N (0,I)

[∥∥ϵ− ϵθ(xt, t, c
t)
∥∥2
2

]
. (2)

Once the denoising network is trained, starting from some
random noise xT ∼ N (0, I), it can be used to sample an
image x0 from the learned distribution by iteratively refin-
ing xt:

xt−1 =
1√
ᾱt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t, c
t)

)
+ σtϵ

′, (3)

where ϵ′ ∼ N (0, I) and σ2
t = βt. Intermediate estimations

of x0 can also be obtained at any timestep t using:

x̂0 =
xt −

√
1− ᾱtϵθ(xt, t, c

t)√
ᾱt

. (4)

In latent diffusion models (LDMs) (e.g., Stable Diffusion),
the forward and reverse diffusion process is done on latent
features maps z = EVAE(x) encoded by a pretrained au-
toencoder instead of RGB pixels x. The denoised latent
representation z0 is decoded into the final image using the
decoder x0 = DVAE(z0).

ControlNet [19] extends the controllability of large scale
pretrained T2I LDMs process by introducing additional
task-specific conditions (cf ), such as Canny edges, depth
maps, or segmentation maps, which encode structural cues
for the target image. The training objective of ControlNet
incorporates these additional conditions:

L = Ex0,t,ct,cf ,ϵ∼N (0,I)

[∥∥ϵ− ϵθ(xt, t, c
t, cf )

∥∥2
2

]
. (5)

This enables fine-grained control over the image generation
process, allowing for precise alignment of the target object
and structural layout in synthesized images.

2. Network Details

High-Frequency Overlay. The goal of this module is to
re-establish high-frequency details in the target object of
the synthesized image (J) from the source image (I). To
achieve this, we employ a simple mechanism that decom-
poses an image into its low and high-frequency compo-
nents. For any image P , The low-frequency component
(ℓlf (P )) is first extracted by applying a Gaussian blur with
a kernel of size 17× 17. The high-frequency component is
then computed as:

ℓhf (P ) = P − ℓlf (P ). (6)

We independently compute both the low and high-
frequency components for the source and synthesized im-
ages, denoted as ℓlf (I), ℓhf (I), ℓlf (J), and ℓhf (J), respec-
tively. Finally, we overlay the high-frequency components
of the target object from the source image onto the synthe-
sized image using its binary mask M as follows:

Ĵ = M ∗ ℓhf (I) + (1−M) ∗ ℓhf (J) + ℓlf (J) (7)

This approach enables high-frequency detail transfer
with minimal computational overhead cf . to complex meth-
ods, such as Poisson blending [11], while maintaining a fa-
vorable trade-off between efficiency and visual quality.
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"prompt": "Two players in motion, 
competing for a soccer ball, one in 
blue jersey, one in black and red, 
dynamic and intense.", 
"lighting_direction": {"azimuthal": 
"45", "polar": "60"}, 
"camera_angle": "medium close-up"
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Figure 1. An illustration of our large-scale dataset. (Left) shows an image from the real-world subset with its derived annotations
(prompt and lighting cues for demonstration) from GPT4o. (Right) shows two samples from the curated 3D-rendered synthetic subset with
their corresponding albedo, shading, depth, and surface normal maps.

3. Datasets

We introduce a novel large-scale dataset for controlled im-
age synthesis (CIS), including real-world and 3D-rendered
synthetic images, as outlined in Section 4.1 of the main
manuscript. The following subsections provide a detailed
description of the curated images and their corresponding
annotations, for both real and synthetic image subsets.

3.1. Real-Image Subset
Real-world images are sourced from MS-COCO [7], Open-
Imagesv7 [1], and FFHQ [6] datasets. However, instead of
randomly selecting the images for training CIS models, we
propose a filtering strategy to leverage images with better
aesthetic quality by using LAION Aesthetic [14] score. Par-
ticularly, we utilize images with LAION Aesthetic scores
above a threshold of 5.0. The threshold has been set based
on the average LAION Aesthetic scores on MIT Adobe 5K
[2] images. We also discard the grayscale images.

As reported in Section 4.1 of the main manuscript, for
each selected image, we generate detailed annotations using
GPT4o [10] as follows:
• five captions of varying lengths (20-50 words), describing

salient objects and background elements,
• dominant light source in terms of spherical coordinates,
• camera orientation,
• objects in the scene with their detailed descriptions, and

overall categorical counts,
• spatial relationships between different objects in the

scene, e.g., The fence is behind the person,
• action relationships, e.g., The person is holding
the coffee cup,

• technical details, such as light source with strength and di-
rection, presence of shadows, color palette, depth of field,
exposure, camera orientation in terms of roll, pitch, and

yaw, and
• aesthetic scoring measuring overall composition, fo-

cus, clarity, memorability (which indicates “how
memorable an image is”), timelessness, and
emotions.

Our real-image subset consists of 240K images with the
above-detailed annotations. These annotations are benefi-
cial for solving diverse tasks. Quality prompts and lighting
conditions are leveraged to enhance photorealism in CIS.
Beyond image synthesis tasks, object descriptions with their
spatial and action relationships could be used for efficient
image understanding, and technical and aesthetic details for
image quality assessment.

3.2. 3D Rendered Synthetic Subset
In addition to the real-image subset, we also construct a syn-
thetic subset to control different natural aesthetics, such as
lighting, and shadow, in the generated images. For this, we
use Blender’s [3] raytrace-based Cycles renderer to generate
images of 3D assets. We collect different HDR environment
textures from PolyHaven1 for lighting the 3D assets while
rendering. For each asset/environment pair, we vary camera
orientation in terms of azimuthal angle from 0◦ to 360◦ and
elevation angle from 45◦ to -15◦.

For each render, we save maps capturing the essential 3D
geometry, material, and illumination cues, which include
albedo, diffuse shading, reflections, shadows, surface nor-
mals, and depth. These maps allow our method to learn
lighting and shadow consistency and provide a basis for im-
proving the realism of the generated images.

Figure 1 illustrates some samples from real-image and
3D-rendered subsets. (Left) shows an image from the real-
world subset with its derived annotations (prompt and light-

1https://polyhaven.com/

https://polyhaven.com/


A can of Transatlantic IPA stands upright on a frozen ice surface, contrasting its vibrant blue label depicting a stylized whale with the grayish 
ice…

A bright yellow rubber duck with an orange beak, resting on textured black and green speckled ground in warm sunlight. The duck faces left, 
casting shadows… 

A red, fuzzy toy with big white eyes and a yellow belly sits on a shiny car hood. Sunlight casts vivid reflections and shadows…

Foreground Ours #1 Ours #2 Ours #3 Ours #4

Figure 2. Consistency in natural aesthetics w.r.t. prompts. Given a fixed background layout, observe how well the proposed method
maintains the natural aesthetics such as lighting, casting shadows, and reflection w.r.t. input foreground and textual prompt, across various
generations.

ing cues for demonstration) from GPT4o. The derived
prompt describes the scene well, along with the accurate es-
timation of lighting coordinates and camera angle. (Right)
shows two samples from the curated 3D-rendered synthetic
subset with their corresponding albedo, shading, depth, and
surface normal maps.

4. Quality Assessment
We employ the following image quality assessment metrics
to measure the quality of generated images using Preserve
Anything against existing works. These metrics evaluate
image quality by assessing divergence from real images in
the feature domain, prompt adherence, and visual appeal of
the generated images. The metrics are briefly described as
follows:
• The Fréchet Inception Distance (FID)2 [5] metric assesses

the quality of generated images by quantifying the diver-

2https://github.com/GaParmar/clean-fid

gence between feature distributions of real and generated
images. It is commonly used to evaluate generative mod-
els, especially Generative Adversarial Networks (GANs)
[4]. It is defined as the distance between two Gaussian
distributions– one representing the real images and the
other representing the generated images. These distribu-
tions are typically derived from a pre-trained Inception
[15] model. A lower FID score indicates greater similar-
ity between generated images and real images, reflecting
the better performance of the generative model.

• The CLIP3 [12, 18] scores assess the alignment between
an image and a corresponding text prompt by measuring
the similarity between their respective feature distribu-
tions. A higher CLIP score indicates better semantic cor-
respondence between the image and the textual descrip-
tion.

• Neural Image Assessment (NIMA) [16] utilizes a con-

3https://huggingface.co/docs/transformers/en/
model_doc/clip

https://github.com/GaParmar/clean-fid
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volutional neural network (CNN) to predict an image’s
aesthetic score on a scale of 1 to 10, which can be inter-
preted as a continuous value reflecting the image’s quality
or classified such as poor, average, excellent, etc.

• No-reference Quality Metric (NRQM) [8] is designed to
predict the perceptual quality of images by analyzing var-
ious features, including sharpness, contrast, and other
aesthetic or perceptual indicators. Specifically, it derives
three types of low-level statistical features in both spatial
and frequency domains, to measure the quantum of super-
resolved artifacts, and learn a two-stage regression model
to predict the quality of images, w/o referring to ground
truth images.

• LAION Aesthetic4 [14] (LAION-Aes) score estimates the
aesthetic quality of an image using large-scale pre-trained
models. It predicts the aesthetic appeal of an image,
aligning with human perceptions of visual attractiveness,
on a scale of 1 to 10, with 1 reflecting poor aesthetic qual-
ity. It is trained on a comprehensive set of images rated
according to human judgment, such as Aesthetic Visual
Analysis (AVA) [9]. The inline model is composed of
simple linear layers on top of CLIP ViT/14 [12], and typ-
ically generates a score that reflects the overall visual ap-
peal of an image, offering insight into how aesthetically
pleasing it may be to human viewers.

We use pyiqa5, a popular image quality assessment tool,
for measuring NIMA and NRQM scores.

5. Ablation Study

We ablate the baseline “RGB Only-BLIP2” from Table
2 in paper by increasing the batch size from 16 to 128.
With large batch size, the FID score (16.98) improves
slightly (+0.33), while other scores show no significant
gains. Larger batches may help stabilize gradients – evi-
dent from improved FID , but do not lead to better quality
outputs.

6. More Results

The images generated using the proposed method demon-
strate enhanced photorealism, preserving natural aesthetics
such as lighting and shadows (see Figure 2), while the tar-
get objects are well-integrated with the background scene.
Following recent work [17], and due to lack of established
metrics to measure lighting and shadow consistency, we
use GPT-4o as a visual critic to rate generated images on
shadow strength, direction, and lighting adherence w.r.t.
shadows. The average scores positively favor the pretrain-
ing. This shows (which is also evident from Figure 2) that

4https : / / github . com / LAION - AI / aesthetic -
predictor

5https://github.com/chaofengc/IQA-PyTorch

pretraining with 3D rendered subset helps in generating im-
ages with consistent lighting and shadows.
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