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7. Model inference

Figure 6. GT-Loc during inference.

Our framework consists of a model that can predict both
the location and capture-time of an image at the same time
using a retrieval approach. Given a query image IQ, a gallery
of GPS coordinates and a gallery of timestamps, GT-Loc
maps the three modalities into a shared feature space us-
ing an image, location and time encoder. The query image
embedding V

Q is compared against a set of location embed-
dings LG and time embeddings TG. The GPS and timestamp
with the highest cosine similarity are selected as the predic-
tions of our model. Figure 6 represents the overview of our
approach.

8. Implementation details
Following GeoCLIP, the backbone of the image encoder is a
pretrained ViT-L/14 from CLIP and the MLP consists of two
fully connected layers with the ReLU activation function
and dimensions 768 and 512 respectively. We use the same
architecture for the time and location encoders as GeoCLIP.
Both employ three RFF positional encoding layers, mapping
the 2-dimensional GPS to a vector with 512 dimensions.
The standard deviation values used to sample the RFF are
�i 2 {20, 24, 28}. The MLPs from the time and location
encoder have three hidden layers with 1024 dimensions and
a projection layer to map the final embeddings into a feature
space of 512 dimensions. In the location encoder, we use a
dynamic queue that stores the last 4096 seen locations, but
we don’t use it for time. The GPS coordinates and times are
augmented by adding Gaussian noise with standard deviation
of 150 meters for the in-batch GPS, 1500 meters for the GPS
queue, 0.15 months and 0.15 hours for time. We perform
two augmentations for each image in the training set using
random resized crops of size 224, random horizontal flipping

and image normalization.

9. Training protocol
GT-Loc is trained for 20 epochs using a cosine decay
scheduler, with learning rate values ranging from ↵max =
3 ⇥ 10�5 to ↵min = 3 ⇥ 10�7. We use Adam optimizer
with coefficients �1 = 0.9, �2 = 0.999 and `2 penalty of
1⇥ 10�6. For the contrastive losses, we use two learnable
temperature parameters that are optimized during training.
The batch size B is set to 512 for all experiments, and the
models are trained on a machine with 12 CPU cores and a
NVIDIA RTX A6000 GPU.

10. Additional qualitative results
We show additional qualitative results of our method in fig-
ures 7 and 8. We include a failure case, on the last row of
figure 8, where the time error is high because of the presence
of fog in the image.

11. Time-of-capture prediction histograms
The time prediction histograms, shown in figures 4, 5, 7, and
8, are computed using the following equation:

Ci =
NGX

j=1

[j2Bi] · I
Q · TG

j , (12)

where Bi is the set of gallery embeddings that correspond to
the ith bin, Ci is the bin count, NG is the gallery size, IQ is
the query image embedding, TG

j is the jth time embedding
from the gallery, and is an indicator variable.

12. Dataset details
We apply two filters to remove samples from the CVT that
don’t provide meaningful temporal information. In partic-
ular, we remove all night-time and indoor images, since
they often have inconsistent temporal cues. To remove night
images, we estimate the sunrise and sunset times from the
date, latitude and longitude using the General Solar Posi-
tion algorithm, and remove all samples before sunrise or
after sunset. Then, for indoor images, we leverage a CNN
model pretrained on the Places365 Dataset [46]. In general,
night images often have inconsistent artificial lighting, more
noise or specialized cameras such as night vision. Indoor im-
ages also have artificial lighting and controlled temperature,
making it difficult to estimate the time or date.

Regarding the levels of noise in the dataset, the SkyFinder
subset consists of images with accurate time estimates, since
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Sunrise at the Pyramids 
of Giza during May

Morning during Spring at 
the Great Wall of China

Picture taken in Sydney, at 
noon during September

Photo of the Colosseum 
during Noon in April

Figure 7. Additional qualitative examples of geo-localization and time-of-capture prediction using text queries. Top: prompt passed to
CLIP’s text encoder. Middle: spatial distribution of the predicted geo-locations with the highest cosine similarity. Bottom: histogram of the
predicted months and hours with the highest cosine similarity.

they were collected from calibrated outdoor webcams. How-
ever, we observed that CVT has a moderate amount of noisy
labels. Thus in order to train a model that can accurately
predict the time, we need both datasets in the training set.

For evaluating the models, we employ a subset of un-
seen SkyFinder cameras, as well as two geo-localization
datasets used by other state-of-the-art methods for evalua-
tion: Im2GPS3k and GWS15k. Similar to GeoCLIP, we cre-
ate a 100k GPS gallery to evaluate the model on Im2GPS3k,
a 500k GPS gallery for GWS15k, and a 100k time gallery
for the SkyFinder test set. The GPS galleries are created by
sampling GPS coordinates from the MP-16 dataset, while the
time gallery is created by sampling times from the combined
CVT and SkyFinder training sets.

13. Additional ablations

13.1. Image backbones

To evaluate the impact of different image embeddings on
time prediction performance, we conducted ablation studies
using three backbones: DINOv2-L [21], OpenCLIP ViT-
G [7], and OpenAI’s original CLIP ViT-L [24]. For these
experiments, we used the TimeLoc variant of our model,
which incorporates only the image and time encoders. The
results, summarized in Table 7, indicate that OpenAI’s CLIP
ViT-L achieves the lowest errors for both hours and months,
as well as the highest Time Prediction Score (TPS).

Backbone Param. Month Hour TPS
Error Error

DINOv2-L 0.3B 2.10 3.25 68.71
OpenCLIP-G 1.8B 1.57 2.94 74.65
CLIP-L 0.2B 1.52 2.84 75.49

Table 7. Comparison of time prediction performance using different
frozen image backbones.

13.2. Time representation
Motivated by the cyclical nature of time, Mac Aodha et al. 17
used circular decomposition to wrap the temporal input to
their geographical prior encoder, resulting in similar embed-
dings for dates that are close to the start and end of the year,
such as December 31st and January 1st. To achieve this, for
each dimension l of the temporal input ~x, they perform the
mapping [sin(⇡xl), cos(⇡xl)], resulting in two numbers for
each dimension.

Time2Vec [10] is a method for encoding time that cap-
tures both periodic and non-periodic patterns. It transforms
scalar time values into a vector of size k + 1. The first ele-
ment models linear, non-periodic trends, while the remaining
elements are defined by a periodic activation function (e.g.,
sine), capturing repeating temporal behaviors like daily or
weekly cycles. The representation is defined as:

t2v(⌧)[i] =

(
!i⌧ + �i if i = 0,

F (!i⌧ + �i) if 1  i  k,
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GPS: (41.7025, -86.2378)
Time: Jul 5, 6:50 PM

GPS: (41.7011, -86.2389) Time: Jun 1, 6:46 PM

GPS: (50.9780, 11.0287)
Time: Jan 10, 12:04 PM

GPS: (51.4824, 11.9713) Time: Feb 12, 12:16 PM

GPS: (46.9170, 7.4670)
Time: Apr 1, 5:36 PM

GPS: (47.2058, 8.1901) Time: Apr 27, 4:25 PM

(a) (b) (c)

GPS: (29.2731, -94.8507)
Time: Jul 28, 7:11 AM

GPS: (29.2743, -94.8533) Time: Jun 15, 7:58 AM

GPS: (38.4579, -109.8201)
Time: Dec 6, 9:09 AM

GPS: (39.1397, -109.0421) Time: Dec 26, 9:43 AM

Figure 8. (a) Additional sample predictions for three cameras of the SkyFinder test set with the ground truth location and capture time.
(b) Spatial distribution of the predicted GPS coordinates colored by the cosine similarity between the location and image embeddings. (c)
Temporal distribution of the predicted month and hour, weighted by the cosine similarity between the time and image embeddings. The red
bin contains the top-1 predicted time.
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where F is a periodic activation function, typically sin, and
!i and �i are learnable parameters representing the fre-
quency and phase shift, respectively.

Table 8. Ablations for time prediction performance using different
time encoders.

Time Month Hour TPS
encoder Error Error
Circular decomp. 1.59 2.86 74.80
Time2Vec 1.56 2.62 75.99
RFF 1.40 2.72 77.00

13.3. Time-of-year scale
Time-of-year (ToY) can be represented at either a monthly
or daily scale. In practice, the choice of time scale should
not significantly affect the results, as the value is normalized
before being passed to the time encoder, T (·). However,
two approaches are available. The first approach converts
the integer month mi and day di into a real-valued month,
normalized over a 12-month period, as shown in Equations
3 and 4. The second approach represents ToY as the number
of days elapsed since the start of the year, normalized over
365 days (assuming no leap years in our dataset). This
representation is defined as:

✓i =
1

365

 
di � 1 +

iX

k=1

D(mk � 1)

!
,

where D(mk) is the number of days in month mk, and it is
assumed that D(0) = 0. In Table 9, we empirically show
that using a monthly scale for ToY representation results
in slightly better performance. However, we attribute this
improvement to statistical noise rather than the time repre-
sentation method itself.

Table 9. Ablations for time prediction performance using monthly
and daily scales.

ToY Month Hour TPS
Scale Error Error
daily 1.45 2.71 76.61
monthly 1.40 2.72 77.00

14. Compositional image retrieval details
To compare GT-Loc against a suitable baseline, we repurpose
the model proposed by Zhai et al. [45] for compositional
retrieval. In its original form, the model comprises an im-
age encoder CI(I), a time encoder CT (t), and a location
encoder CL(L). It concatenates the image and time embed-
dings to predict location via P (l | CI , CT ), and similarly

concatenates the image and location embeddings to predict
time via P (t | CI , CL).

To adapt it for compositional image retrieval, we take a
query time TQ and location L

Q along with an image gallery
I
G. First, we concatenate each image embedding CI(IG)

with CT (TQ) or CL(LQ) and feed these pairs to the respec-
tive classification heads. This yields probability distributions
Pi(l | CI , CT ) and Pi(t | CI , CL) for each image i in the
gallery, indicating how well that image matches the queried
location and time. Since we already know the desired lo-
cation and time, we extract the corresponding probabilities
from the distributions and average them to produce a final
similarity score. Ranking by this score allows us to retrieve
the top-k gallery images most likely to match (TQ

, L
Q).

This adaptation of the Zhai et al. [45] model provides a
direct, fair comparison to GT-Loc’s performance on compo-
sitional retrieval tasks.

Figure 9 shows two qualitative results of our composi-
tional retrieval model.

GPS: (38.4579, -109.8201)
Time: Feb 1, 8:39 AM

GPS: (38.4579, -109.8201)
Time: Feb 7, 7:39 AM

GPS: (46.91670, 7.4670)
Time: May 4, 7:06 PM

GPS: (46.91670, 7.4670)
Time: Jul 17, 5:06 PM

(a)

(b)

Figure 9. Illustrating compositional L+ T ! I retrieval with GT-
Loc. Each example Left: query location and query time, showing
actual image. Right: retrieved image for given query location and
time.

15. Additional geo-localization analysis
Figure 10 presents the cumulative geolocation error evalu-
ated over a range of distance thresholds. In addition to our
main results, we include evaluations on two extra datasets:
YFCC26k and OSV-5M. These plots allow for a more com-
prehensive comparison of model performance across diverse
data distributions. We also include a comparison against
the hybrid method proposed by Astruc et al. [1], which was
not shown in the main paper. We observe that our method,
GT-Loc, consistently outperforms Astruc et al. [1] on all
datasets with the exception of OSV-5M. We attribute this to
the fact that OSV-5M contains imagery that is in-domain for
their model, whereas it is out-of-domain for ours.
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Figure 10. Cumulative geolocation error at different thresholds.

16. Effect of population density on geo-
localization

Geo-localization datasets, particularly those collected via
web-scraping or social media platforms, are inherently bi-
ased toward regions with higher population density. This
raises a natural question: how does the performance of geo-
localization algorithms vary between densely and sparsely
populated areas? To investigate this, we conduct an addi-
tional analysis. For each image in our dataset, we obtain the
corresponding population density from the Gridded Popula-
tion of the World version 4 (GPWv4) dataset [39]. We then
group the data into ranges based on population density (mea-
sured in pop/m

2) and compute the median geo-localization
error within each group. This stratified evaluation allows
us to assess model performance across regions with vary-
ing levels of human activity. Consistent with the findings
of Astruc et al. [1], we observe that geo-localization errors
tend to be higher in areas with lower population density, as
summarized in Table 10.

Table 10. Median geo-localization error by population density
group.

Pop. density Im2GPS3k (km) GWS15k (km)

< 100 266.66 1244.22
[100, 1k) 246.12 818.65
[1k, 10k) 197.99 639.73
� 10k 38.32 1035.81

17. Model performance vs. gallery size
Figure 11 shows how the size of the gallery affects geo-
localization and time prediction performance. We observe
that increasing the size of the gallery leads to improved re-
sults, but the gains tend to saturate quickly. In particular, a
gallery containing 100,000 samples is already sufficient to
capture the majority of the performance improvements for
geo-localization. Interestingly, for time-of-capture predic-

tion, we find that even smaller archives, such as those with
only 4,000 samples, can still yield strong performance.

Figure 11. Effect of gallery size on geo-localization and time
prediction.

18. Analysis of the learned embedding space

One of the key motivations for GT-Loc is to align images,
time, and location in a shared multimodal embedding space.
This approach is inspired by prior works like GeoCLIP [37],
SatCLIP [11], and CSP [18], which embed images and GPS
coordinates in shared spaces, as well as methods like Image-
Bind [4], LanguageBind [48], Everything At Once [31], and
Preserving Modality [32], which align multiple modalities
such as images, text, videos, and audio. Our work extends
this idea to include temporal information, showing in Table
1 that aligning these three modalities leads to improved time
prediction performance compared to using only images and
time.

To explore the relationships between these modalities in
the learned embedding space, we performed Principal Com-
ponent Analysis (PCA) on the embeddings. While PCA
has limitations in fully capturing the underlying structure
of high-dimensional spaces, the results provide interesting
qualitative insights. Figure 12(a) presents the distributions of
image, time, and location embeddings, appearing in different
subspaces. Figures 12(b) and 12(c) show more details about
the relationship between image and time embeddings. The
image embeddings are clustered in the center, surrounded
by time embeddings. Notably, the directions of hours and
months are well-defined: months are radially distributed,
while hours are linearly distributed in a perpendicular di-
rection. For location embeddings (Figures 12(d-e)), even
though the patterns are less pronounced, the embeddings at
different latitudes and longitudes still form distinct clusters
in the feature space.
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Figure 12. PCA plots of the embedding spaces in GT-Loc. (a)
Distribution of the image, time and location embeddings. (b)-(c)
Distribution of the image and time embeddings, colored by the
time-of-day and time-of-year respectively. (c)-(d) Distribution of
the image and location embeddings, colored by the latitude and
longitude respectively.

19. Embedding distribution of non-overlapping
panorama crops

To further analyze the structure of our learned embedding
space, we conduct a qualitative visualization using t-SNE
(Figure 13). We begin by randomly selecting 20 panoramas
from the CVUSA dataset [42]. From each panorama, we
extract four non-overlapping 90� crops, resulting in a total
of 80 image embeddings. Since all four crops from a single
panorama share the same capture time and location by def-
inition, they serve as a natural test of spatial and temporal
consistency in the embedding space. In the resulting t-SNE
plot, we observe that embeddings from the same panorama
(shown using the same color) form tight and coherent clus-
ters, suggesting that our model effectively encodes shared
contextual information across views from the same scene.

20. Scalability of the retrieval approach
In Table 11, we present a comparison of the memory usage
and computational cost (measured in FLOPs) between clas-
sification and regression baselines and our retrieval-based

Figure 13. t-SNE visualization of image embeddings from non-
overlapping 90� crops of 20 panoramas sampled from the CVUSA
dataset. Each color represents the four crops from a single
panorama, which share the same time and location.

approach, across gallery sizes ranging from 4,000 to 500,000
samples. At the upper end of this range (500k), we observe
that memory usage increases by approximately 950 MB.
However, the additional computational cost introduced by
the retrieval operations remains minimal, with only a +3.32%
increase in FLOPs. It is important to note that the gallery
embeddings used for retrieval are precomputed offline in a
single forward pass (requiring 9.47 TFLOPs) and are there-
fore not included in the runtime FLOPs reported in the table.

Table 11. Memory usage and compute cost.

Method Memory (GB) TFLOPs

(gallery size) Params Gallery Total Forward Retrieval Total

CLIP + cls 1.63 – 1.63 159.41 – 159.41
CLIP + reg 1.63 – 1.63 159.41 – 159.41

GT-Loc (4k) 1.67 0.01 1.68 159.41 0.004 159.41
GT-Loc (20k) 1.67 0.04 1.71 159.41 0.021 159.43
GT-Loc (100k) 1.67 0.19 1.86 159.41 0.105 159.52
GT-Loc (500k) 1.67 0.95 2.62 159.41 0.524 159.94

21. Limitations and reproducibility challenges
of existing time prediction methods

Most previous time prediction methods suffer from a lack
of standardization in their training and evaluation protocols.
For instance, Zhai et al. [45] use subsets of the AMOS [8, 9]
and YFCC100M [34] datasets, without providing the source
code or exact dataset splits necessary to replicate their exper-
iments. Additionally, their time prediction evaluation relies
on cumulative error plots, but they do not provide a single nu-
merical value summarizing the performance of their model.
Similarly, while Salem et al. [26] and Padilha et al. [22]
offer datasets and code, they do not include the cross-camera
split for zero-shot time prediction—a more challenging and
informative evaluation protocol that we adopt. Moreover,
their results are presented only qualitatively, though they can
be adapted for obtaining quantitative results. Salem et al.
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[27] also omit critical details such as dataset splits for the
SkyFinder dataset, do not clarify whether their results cor-
responds to same- or cross-camera evaluation, and fail to
provide the source code for replication. Their use of top-k
accuracy as an evaluation metric further complicates direct
comparisons. Notably, none of these methods, with the ex-
ception of Salem et al. [26] and Padilha et al. [22], compare
their time prediction performances against each other, and
even these comparisons are only qualitative. Other time
prediction approaches, including those by Tsai et al. [36],
Li et al. [16], Lalonde et al. [14], and Hold-Geoffroy et al.
[6], also face similar challenges, such as a lack of avail-
able source code, missing datasets, or datasets that are no
longer hosted online. This lack of standardization prevents
consistent benchmarking across different methods.

22. Qualitative time-of-day results near sunrise
and sunset

Predicting the time of day during periods close to sunrise and
sunset is particularly challenging due to the visual similarity
of scenes captured around these times. The task is further
complicated by its strong dependence on geographic location
(latitude) and the time of year (month), both of which have
a direct influence on the time when these events occur. To
illustrate these challenges, Figure 14 presents two qualitative
examples where GT-Loc makes accurate predictions, as well
as two examples where it fails.

GT: 7:11 PM → P: 7:03 AM

GT: 8:06 PM → P: 8:42 PMGT: 7:19 AM → P: 7:14 AM

GT: 7:49 PM → P: 7:14 AM

Figure 14. Qualitative time-of-day results near sunrise and sunset.
Top row: correct predictions where the prediction (P) is within one
hour of the ground truth (GT). Bottom row: failure cases.

Latitude range: 40° to 70°

Ground truth

TimeLoc

GT-Loc

Nov 16, 13:48:02

Nov 26, 14:15:44
(TPS=95.22%)

May 08, 15:07:28
(TPS=32.07%)

Oct 19, 16:56:37

Aug 26, 15:02:56
(TPS=76.30%)

Apr 15, 13:13:52
(TPS=27.26%)

Apr 24, 16:58:49

Mar 07, 14:45:20
(TPS=77.29%)

Oct 15, 12:55:12
(TPS=28.86%)

Latitude range: 10° to 40°

Ground truth

TimeLoc

GT-Loc

Jun 20, 18:02:41

May 23, 15:59:12
(TPS=83.70%)

Dec 24, 13:37:52
(TPS=25.86%)

Jun 14, 15:44:47

Jun 10, 13:41:20
(TPS=87.78%)

Dec 08, 12:20:32
(TPS=28.85%)

May 26, 13:51:08

Apr 26, 13:46:40
(TPS=88.52%)

Nov 27, 13:26:24
(TPS=29.96%)

Latitude range: -10° to 10°

Ground truth

TimeLoc

GT-Loc

May 18, 12:07:50

Mar 19, 13:37:52
(TPS=75.18%)

Nov 20, 12:44:00
(TPS=30.20%)

May 25, 08:19:05

Apr 07, 08:24:00
(TPS=81.44%)

Dec 22, 11:10:40
(TPS=37.61%)

Oct 31, 15:42:46

Aug 21, 13:52:48
(TPS=70.57%)

May 17, 13:54:40
(TPS=34.88%)

Latitude range: -40° to -10°

Ground truth

TimeLoc

GT-Loc

May 05, 12:14:06

Apr 30, 12:53:36
(TPS=95.67%)

Nov 21, 13:38:24
(TPS=35.10%)

Feb 10, 13:54:42

Mar 23, 13:17:52
(TPS=83.12%)

Aug 23, 14:02:56
(TPS=33.99%)

Apr 14, 14:18:05

Jun 20, 14:11:28
(TPS=74.02%)

Aug 18, 14:26:56
(TPS=30.65%)

Figure 15. Sample predictions where GT-Loc outperforms the
TimeLoc baseline across different latitudes.

23. GT-Loc predictions across different lati-
tudes

Figure 15 compares time prediction examples from GT-Loc
and TimeLoc, a baseline model trained solely with the vi-
sual (V) and temporal (T ) encoders. The results suggest
that TimeLoc struggles more with hour predictions at higher
latitudes (40° to 70°) compared to GT-Loc. In contrast, at
moderate latitudes (-40° to 40°), both models exhibit more
consistent hour prediction errors, though GT-Loc demon-
strates superior performance in month prediction.
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