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In this supplementary document, we provide additional
details of the proposed STEP-DETR. Section | outlines the
implementation detail, including data pre-processing and
training configurations. Section 2 presents extended experi-
mental results and analyses of each module’s contribution.
Section 3 includes visualizations of pseudo-labels, queries,
and predictions of proposed STEP-DETR.

1. Additional Details of Implementation.

The STEP-DETR approach is implemented using the
MMDetection framework [ 1], with data pre-processing meth-
ods adapted from Soft-Teacher [3]. The model is trained on
an A100 GPU with 80GB memory, requiring approximately
two days to complete 120,000 iterations. In the COCO-
Partial setup, the static teacher is trained on labeled data
for 12 epochs; after this, the network is trained for 120,000
iterations, processing five images per iteration. The first
60,000 iterations utilize a one-to-many assignment strategy,
followed by a one-to-one assignment for the remaining it-
erations. The labeled-to-unlabeled data ratio is set at 1:4.
In the Pascal VOC setup; the training involves 40,000 itera-
tions with a one-to-many assignment strategy, transitioning
to one-to-one for the next 40,000 iterations, with the same
labeled-to-unlabeled ratio (For every labeled image, there
are four unlabeled ones. This standard ratio, as in Soft-
Teacher and Semi-DETR, ensures fair comparison). Across
all setups, a confidence threshold of 0.4 is used. The model
employs the Adam optimizer with a learning rate of 0.001
and no learning rate decay to ensure a fair comparison with
Semi-DETR [4].

Data Augmentation. We adopt the data augmentation strat-
egy proposed in Semi-DETR [4], as detailed in Table 2. To
generate pseudo-labels, weak augmentation is applied to the
unlabeled data, ensuring reliable pseudo-label generation.
During the student’s training phase, both labeled and un-
labeled data undergo strong augmentation, enhancing the
student’s robustness and generalization capabilities.

2. Additional Details of Modules.

In this section, we conduct additional experiments to eval-
uate the contribution of each module in the STEP-DETR
framework.

COCO-Partial
mAP AP5() AP75

Exp-1 435 597 468
Exp2 435 598 468
Exp-3 457  63.1 493

Method

Table 1. Performance comparisons of different variants of Teacher.
The mAP results for Exp-1, Exp-2, and Exp-3, highlighting the
impact of incorporating the Static Teacher in the Super Teacher
module. Performance on employing only the Dynamic Teacher
(Exp-1), the Dynamic Teacher initially trained on limited labeled
data and generating pseudo-labels for the student (Exp-2) and the
full Super Teacher module with both Static and Dynamic Teachers
(Exp-3).

Impact of Super Teacher: We perform additional experi-

ments to assess the efficacy of our Super Teacher as follows:

1. Is the Static Teacher in the Super Teacher module crucial?
Can we train the Dynamic Teacher independently and
then have it update its parameters based on the student’s
learning, or is the Static Teacher necessary for optimal
performance?

2. How does the absence of the Static Teacher affect train-
ing? How does Static Teacher affect the training process
and overall performance?

To address these two questions, we conduct three experi-

ments as follows:

Exp-1: In this experiment, we use only the Dynamic
Teacher, which updates its parameters via the student EMA
update. The setup for this experiment is illustrated in Fig-
ure 1(a). As shown in Table I, the performance drops to
43.5 mAP without the Static Teacher. This result highlights
the critical role of the Static Teacher in our Super Teacher



Augmentation

Labeled image training

Unlabeled image training Pseudo-label generation

Scale Jitter

shortest edge € [480, 800)]

shortest edge € [480, 800)]

Solarize Jitter

p = 0.25, ratioc (0, 1)

shortest edge € [480, 800)
p = 0.25, ratioe (0,1) -

Brightness

p = 0.25, ratio€

Y

p = 0.25, ratio€ (

Contrast Jitter

Sharpness Jitter

(0,1)
p = 0.25, ratioc (0, 1)
p = 0.25, ratio€ (0, 1)

)

0,1)
p = 0.25, ratio€ (0, 1) -
p = 0.25, ratio€ (0, 1)

Translation - p = 0.3, translation ratio€ (0, 1) -
Rotate - p = 0.3, angle€ (0, 30°) -
Shift - p = 0.3, angle€ (0, 30°) -
Cutout nume (1,5), ratio€ (0.05,0.2) | numée (1,5), ratio€ (0.05,0.2) -

Table 2. Data augmentations used in our approach. p indicate the probability of choosing a certain type of augmentation.
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Figure 1. Experimental setups for the Super Teacher module and
its components. (a) Exp-1: The Super Teacher generates pseudo-
labels only through the Dynamic Teacher that is updated using the
student’s EMA updates, without the Static Teacher. (b) Exp-2: In
Super Teacher, the Dynamic Teacher is first trained on the available
labeled data (e.g., 10%) and then generates pseudo-labels for the
student. It is updated using the student’s EMA updates without the
Static Teacher. (¢) Exp-3: In Super Teacher, the Static Teacher is
trained on the labeled dataset and provides stable pseudo-labels to
the student, with its parameters frozen. The Dynamic Teacher con-
tinues to update based on the student’s learning. The pseudo-labels
from both the Static Teacher and the Dynamic Teacher are concate-
nated and fed to the student, resulting in improved performance.

module. The likely reason for the effectiveness of the Static
Teacher is that the Dynamic Teacher updates according to
the student’s learning progress. At the early stages of train-
ing, the student results in poor-quality labels from Dynamic
Teacher. It highlights the Static Teacher’s stabilizing role in
Dynamic Teacher’s guidance.

Exp-2: In this experiment, the Dynamic Teacher is first
trained on the available labeled data (e.g., 10%) and then
generates pseudo-labels for the student. As shown in Ta-
ble 1 and illustrated in Figure 1(b), this approach results in
a performance of 43.5 mAP. Despite the initial training on
labeled data, the Dynamic Teacher does not improve pseudo-
label quality as the student updates it. The students’ early

inaccurate predictions influence the updates to the Dynamic
Teacher. As the student makes low-quality predictions, these
errors are passed to the Dynamic Teacher, hindering its abil-
ity to refine pseudo-labels effectively. It creates a feedback
loop that limits performance and highlights the challenge of
relying solely on the Dynamic Teacher without the Static
Teacher.

Exp-3: The Static Teacher is first trained on the labeled
dataset, and its parameters are frozen. The student and Dy-
namic Teacher continue updating during the learning process,
but the Static Teacher’s parameters remain frozen. This setup
is illustrated in Figure 1(c). As shown in Table 1, this ap-
proach achieves a performance of 45.7 mAP. The role of the
Static Teacher is to provide stable and consistent pseudo-
labels based on its pre-learned knowledge, which helps miti-
gate the impact of noisy predictions from the student during
the early stages of training. By offering reliable supervision,
the Static Teacher ensures a more robust learning process
than relying solely on the Dynamic Teacher, whose updates
are affected by the student’s noisy predictions.

Category-level results. Table 3 shows Category-level results
of all categories for Static Teacher, Dynamic Teacher and
Super Teacher.

Super Teacher role and benefit: It contains Static Teacher
trained on label data and Dynamic Teacher that is up-
dated with Student learning (Exp3). It ensures reliable guid-
ance, preserves labeled data knowledge, and provides strong
pseudo-labels from the first iteraiton.

Static Teacher need and updation: It is needed to generate
consistent and reliable pseudo-labels from the beginning
and is not updated (as shown in Figure 3) to prevent error
propagation caused by student’s early inaccurate predictions.
Updating Static Teacher declines accuracy by 6.8%.

Pseudo-labels for Rare vs. Common Classes. In Fig-
ure 2, we demonstrate how the Dynamic and Super Teacher
generate pseudo-labels for rare and common classes. In the
Dynamic Teacher, common classes exhibit higher confidence
than rare classes, as observed in Figure 2(a) at the start of
training. As a result, queries for rare classes, which initially
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Figure 2. Illustration of rare and common class handling by three types of teachers: Dynamic Teacher, Static Teacher, and Super Teacher.
(a) In Dynamic Teacher, common classes exhibit higher confidence, while rare classes are filtered out due to low-confidence pseudo-labels.
This limits the model’s ability to learn from rare classes effectively during early training. (b) Static Teacher provides high-confidence
pseudo-labels for both rare and common classes, overcoming the limitations of the Dynamic Teacher but lacking adaptability. (c) Super
Teacher combines the strengths of both Static and Dynamic Teachers, providing a balanced approach that ensures improved handling of both
rare and common classes.

Confidence Scores distribution of Pseudo Scores Confidence Scores distribution of Pseudo Scores

200 =1 dynamic teacher 20.0 =) dynamic teacher
[ static teacher : Static [ static teacher
1751 |Dynamic 175 Teacher
Teacher
150 15.0
> 125 > 12.5
N @
g 100 £ 10.0
Q
a a
75 7.5
50 ) 5.0 Dynamic
Static Teacher
25 Teacher 25
0 0.0

0.0 0.1 0.4 0.6
Confidence Scores

(b) At 120k iteration

0.2 0.3
Confidence Scores

(a) At Ok iteration

Figure 3. Illustration of the behavior of Static Teacher and Dynamic Teacher during student learning. (a) At the start of training (Ok
iterations), the Static Teacher provides fixed pseudo-labels that remain constant throughout the learning process. At the same time, the
Dynamic Teacher begins updating its pseudo-labels based on the student’s learning. (b) By the end of training (120k iterations), the Static
Teacher retains its original pseudo-labels, offering consistent guidance. In contrast, the Dynamic Teacher has adapted its pseudo-labels to
align with the student’s learning progression. This comparison highlights the static and adaptive characteristics of the two teacher types

during training.

have low confidence, are not generated since their pseudo-
labels are filtered out. This filtering mechanism limits the
super teacher-student ability to effectively learn from rare
classes during the early stages of training. Figure 2(b) shows
the pseudo-label scores for rare and common classes. In the
Super Teacher, which combines both the Dynamic and Static
Teachers, high-confidence pseudo-labels are provided for
rare classes as well, as shown in Figure 2(c). After filtering,
pseudo-labels for rare classes remain, enabling their queries
to be generated. This approach improves students’ learning
ability from rare classes and enhances overall performance.

Static Teacher vs. Dynamic Teacher Behavior During
Training. Figure 3 illustrates the behavior of the Static
Teacher and Dynamic Teacher during the student’s learning
process. At the start of training, shown in Figure 3(a), the
Static Teacher provides fixed pseudo-labels that remain the

same throughout the training process, while the Dynamic
Teacher begins updating its pseudo-labels based on the stu-
dent’s learning. By the end of the training, as shown in
Figure 3(b), the Static Teacher retains its original pseudo-
labels, offering consistent guidance, whereas the Dynamic
Teacher has adapted its pseudo-labels over time to align with
the student’s learning and progression. This comparison
highlights the static and adaptive characteristics of Static and
Dynamic teacher throughout the training process.

Quantity of Pseudo-label Text Queries. Prior works [2, 4]
exclude rare class queries by filtering out low-confidence
rare-class instances. We incorporate them through text
queries to enhance detection performance We analyze the
quantity of pseudo-label text queries using a single batch
example, as illustrated in Figure 4(a). Each image in the
batch has a varying number of pseudo-labels from Super



Category AP (Static) AP (Dynamic) AP (Super) \ Category AP (Static) AP (Dynamic) AP (Super)
person 0.481 0.572 0.584 bicycle 0.221 0.321 0.333
car 0.340 0.441 0.462 motorcycle 0.322 0.451 0.469
airplane 0.603 0.686 0.712 bus 0.585 0.674 0.694
train 0.589 0.676 0.693 truck 0.281 0.348 0.370
boat 0.188 0.282 0.293 traffic light 0.211 0.281 0.284
fire hydrant 0.600 0.688 0.715 stop sign 0.581 0.621 0.627
parking meter 0.386 0.482 0.514 bench 0.185 0.245 0.258
bird 0.312 0.396 0.415 cat 0.628 0.791 0.796
dog 0.564 0.659 0.673 horse 0.484 0.624 0.656
sheep 0.419 0.560 0.574 cow 0.472 0.610 0.611
elephant 0.605 0.715 0.724 bear 0.694 0.754 0.757
zebra 0.623 0.701 0.708 giraffe 0.615 0.713 0.716
backpack 0.089 0.135 0.137 umbrella 0.283 0.389 0.415
handbag 0.071 0.103 0.139 tie 0.260 0.363 0.370
suitcase 0.283 0.450 0.459 frisbee 0.560 0.683 0.688
skis 0.155 0.240 0.272 snowboard 0.239 0.345 0.433
sports ball 0.394 0.471 0.478 kite 0.351 0.460 0.486
baseball bat 0.208 0.286 0.343 baseball glove 0.282 0.387 0.415
skateboard 0.420 0.529 0.574 surfboard 0.264 0.390 0.440
tennis racket 0.397 0.487 0.526 bottle 0.281 0.385 0.407
wine glass 0.242 0.372 0.387 cup 0.325 0.424 0.433
fork 0.201 0.353 0.415 knife 0.073 0.179 0.214
spoon 0.069 0.133 0.199 bowl 0.304 0.424 0.460
banana 0.177 0.243 0.274 apple 0.132 0.161 0.182
sandwich 0.274 0.364 0.387 orange 0.265 0.285 0.288
broccoli 0.194 0.238 0.252 carrot 0.137 0.196 0.241
hot dog 0.214 0.383 0.436 pizza 0.472 0.566 0.580
donut 0.385 0.505 0.547 cake 0.230 0.366 0.396
chair 0.182 0.286 0.306 couch 0.334 0.442 0.474
potted plant 0.179 0.250 0.475 bed 0.387 0.482 0.513
dining table 0.220 0.284 0.314 toilet 0.518 0.622 0.625
tv 0.508 0.580 0.594 laptop 0.434 0.627 0.635
mouse 0.521 0.614 0.631 remote 0.193 0.314 0.360
keyboard 0.408 0.541 0.583 cell phone 0.281 0.355 0.389
microwave 0.443 0.576 0.591 oven 0.234 0.356 0.362
toaster 0.207 0.372 0.374 sink 0.290 0.387 0.396
refrigerator 0.428 0.599 0.615 book 0.096 0.136 0.148
clock 0.468 0.540 0.544 vase 0.281 0.382 0.419
scissors 0.056 0.284 0.375 teddy bear 0.349 0.479 0.539
hair drier 0.148 0.158 0.180 toothbrush 0.103 0.238 0.286

Table 3. Comparison of Average Precision (AP) for Static Teacher, Dynamic Teacher, and Super Teacher.

Teacher; the highest pseudo-label count across all images is
used as a baseline to ensure uniformity across the batch. To
maintain consistency, these pseudo-labels are repeated five
times. For each repetition, corresponding bounding boxes
and text embeddings are generated and fed as text queries to
the decoder of super teacher-student.

Quantity of Denoising Text-guided Object Queries. It’s
hard to distinguish object-background from denoising.
Adding noise to denoising queries typically shifts bound-
ing box coordinates without altering class labels, making it

harder for the classifier to distinguish the background. This
issue worsens in semi-supervised learning, where denoising
queries are generated from noisy pseudo-labels. For this,
we employ Denoising Text-guided Object Queries. Unlike
prior denoising approaches, we assign correct textual em-
beddings to foreground-positive queries, leveraging pseudo-
labels from the Super Teacher as text queries, while assigning
random embeddings to background-negative queries

Figure 4(b) illustrates the process of generating denoising
text-guided object queries for images in a batch. To ensure
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Figure 4. Running Example of Pseudo-Label Text Queries and Denoising Text-Guided Queries for a Batch. (a) Pseudo-label text queries
take the maximum pseudo-label count in a batch from the Super Teacher as the baseline, repeating these labels multiple times for consistency.
Corresponding bounding boxes and text embeddings are used as text queries. (b) Denoising text-guided object queries generates both
positive and negative object queries, where negative queries contain more noise than positive queries. Negative query labels are randomly
selected based on probabilities, while positive query labels are from the Super Teacher. For images without ground-truth, random labels and

bounding boxes are assigned. Here, it can be observed that denoising text-guided queries are larger in quantity compared to pseudo-label
text queries. For a more detailed and clearer view, please zoom in.
(a) Ground-truth

(b) Pseudo-labels in Semi-DETR (c) Pseudo-labels in STEP-DETR

Figure 5. Qualitative Comparison of pseudo-labels at 60k iterations. (a) Ground-truth (b) Pseudo-labels in Semi-DETR (c) Pseudo-labels
with both Dynamic and Static Teachers in STEP-DETR. Compared to Semi-DETR, our approach generates more accurate query proposals
for each unlabeled image. Ground-truths are outlined in green, while positive query proposals are highlighted in blue. STEP-DETR
outperforms Semi-DETR, as evidenced by the positive proposals from both Dynamic and Static teachers. Additionally, STEP-DETR
introduces text queries based on positive proposals from the Super Teacher and refines the Denoising Text-Guided Object Queries module,
significantly improving proposal quality and identification accuracy.
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Figure 6. Qualitative Comparison of Standard Denoising Object Queries and Denoising Text-Guided Object Queries. (a) Ground-truth (b)
Pseudo-labels of Super Teacher (c) Standard Denoising Object Queries (d) Denoising Text-Guided Object Queries. Text-guided queries
generate more accurate proposals for each unlabeled image than standard denoising queries. To generate foreground query-box pairs,
the correct text embedding from the Super Teacher is added to the positive object queries. Additionally, background query-box pairs are
generated by randomly assigning labels from the total categories to the object queries of boxes indexed based on probability, as in red box
regions. STEP-DETR introduces text queries based on the positive proposals from the Super Teacher and refines them through the Query
Refinement module. This process filters queries based on pseudo-labels, improving proposal quality and enhancing performance.

robust and diverse query generation, the filtered pseudo-
ground-truth per image is doubled and scaled by an adaptive
DN factor. These queries are then categorized evenly into
positive and negative groups. Bounding boxes with added
noise are assigned to these queries, with negative queries
incorporating higher noise levels compared to positive ones.
Positive queries are derived from the Super Teacher, whereas
negative queries receive labels randomly sampled from the
class distribution, guided by randomly assigned probabili-
ties. For images without pseudo ground-truth, random labels
and bounding boxes are generated to maintain uniformity
in query generation across the entire batch. This method
introduces controlled noise and variability, enhancing the
model’s adaptability and ability to generalize. As shown
in Figure 4, the denoising text-guided queries are larger in
quantity compared to pseudo-label text queries.

Confidence score of rare vs common categories. We pro-
vide additional results of rare category comparison for su-
pervised baseline DINO vs STEP-DETR in Table 4. With
10% label data, rare categories like “fire hydrant” has lower
confidence Figure 2b and 60.0 AP. STEP-DETR improves
both.

Approach ‘ rare category:AP ‘ confidence score
Supervised (10%) | fire hydrant: 60.0 | Figure 2b
Semi-supervised (10%) | fire hydrant: 71.5 | Figure 2¢

Table 4. Additional results of rare category comparison for super-
vised vs STEP-DETR.



3. Additional Visual Analysis of Pseudo-labels,
Queries and Output Predictions.

Visual Analysis of Pseudo-labels. Figure 5 presents a quali-
tative comparison of pseudo-labels at 60k iterations, showing
pseudo-labels generated using only the Dynamic Teacher as
in Semi-DETR and those generated using the Super Teacher
in STEP-DETR. By leveraging superior pseudo-labels from
the Super Teacher, STEP-DETR outperforms Semi-DETR,
producing more accurate query proposals for each unlabeled
image.

Visual Analysis of Denoising Queries. Figure 6 provides
a comparison between Standard Denoising Object Queries
and Denoising Text-Guided Object Queries. The text-guided
queries outperform the standard ones in generating more
accurate query proposals for each unlabeled image. This
improvement allows for a clearer and more reliable differen-
tiation between object and background queries, thereby en-
hancing the model’s ability to distinguish foreground objects
from the background. To further address redundancy and im-
prove model efficiency, we refine the denoising text-guided
object queries using pseudo-label text queries in Query Re-
finement module. This refinement removes irrelevant or
redundant queries, particularly among background queries,
as highlighted in the red-boxed regions in Figure 6. By
filtering out these redundant queries, it enhances training
efficiency and performance.

Visual Analysis of Output Predictions. Figure 7 pro-
vides qualitative comparisons between the baseline Semi-
DETR and STEP-DETR. While Semi-DETR misses objects
like the hotdog, STEP-DETR demonstrates notable improve-
ments by detecting missed objects and providing more accu-
rate bounding boxes, highlighting its superior performance
in object detection tasks.

References

[1] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong,
Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu,
Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng,
Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai,
Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change
Loy, and Dahua Lin. MMDetection: Open mmlab detection
toolbox and benchmark. arXiv preprint arXiv:1906.07155,
2019. 1

[2] Tahira Shehzadi, Khurram Azeem Hashmi, Didier Stricker, and
Muhammad Zeshan Afzal. Sparse semi-detr: Sparse learnable
queries for semi-supervised object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5840-5850, 2024. 3

[3] Mengde Xu, Zheng Zhang, Han Hu, Jianfeng Wang, Lijuan
Wang, Fangyun Wei, Xiang Bai, and Zicheng Liu. End-to-
end semi-supervised object detection with soft teacher. CoRR,
abs/2106.09018, 2021. 1

[4] Jiacheng Zhang, Xiangru Lin, Wei Zhang, Kuo Wang, Xiao
Tan, Junyu Han, Errui Ding, Jingdong Wang, and Guanbin Li.
Semi-detr: Semi-supervised object detection with detection
transformers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 23809-23818,
2023. 1,3



(a) Ground-truth (b) Semi-DETR (c) STEP-DETR

Figure 7. Qualitative comparisons between the baseline Semi-DETR and STEP-DETR on COCO validation data. (a) Ground-truth (b)
Semi-DETR predictions. (c) STEP-DETR predictions. STEP-DETR demonstrates improved detection accuracy.
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