
Supplementary Materials: Fish2Mesh Transformer

Tianma Shen1 Aditya Puranik1 James Vong1 Vrushabh Deogirikar1 Ryan Fell1

Julianna Dietrich1 Maria Kyrarini1 Christopher Kitts1

David C. Jeong1

1Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053
{tshen2, apuranik, jvong, vdeogirikar, rfell, jdietrich, mkyrarini, ckitts, dcjeong}@scu.edu

S.1 Equipment and Setup

S.1.1 Recording Equipment

Each recording session utilized two iPhone 14s (requir-
ing at least 1.3 GB of storage per participant) and two
tripods to secure these iPhones at specified positions (See
Fig. 1. Additionally, an Insta360 ONE X2 head-mounted
camera with 5.7K 360-degree video resolution was em-
ployed, requiring a minimum storage of 2 GB per partici-
pant.

Figure 1. Top-Down View of the Experimental Setup

S.1.2 Camera Positioning and Setup

For each session, the main camera and the side camera
were placed in predetermined locations on the floor, marked
with blue tape to ensure consistent positioning as shown

in Fig. 1. The tripods were adjusted to capture the par-
ticipant’s full body, allowing for actions involving move-
ment beyond the immediate standing area, such as lunges.
Additionally, as shown in Fig. 2, both cameras were set
to 1x zoom to limit distortions caused by camera settings.
The head-mounted camera was configured to Hi-Resolution
Video Recording Mode, with the screen facing downward to
facilitate easy referencing by the participant (See Fig. 3).

S.2 Participant Instructions and Recording
Procedure

S.2.1 Initial Setup and Synchronization

Before recording, all three cameras (the Main, Side, and
Head cameras) were started simultaneously to ensure syn-
chronization. Each participant performed a single loud clap
at the beginning of each session, which served as a synchro-
nization cue across all cameras.

S.2.2 Action Instructions

Participants were given a prompt (an action to be per-
formed), which they sequentially presented to the Head
Camera, Main Camera, and Side Camera as shown in 3.
They were instructed to perform the action naturally for 10
to 20 seconds, with a maximum duration of 30 seconds. Par-
ticipants could step outside the marked area as required for
specific actions. The session concluded after the participant
completed the final prompt, at which point all cameras were
stopped.

S.3 Post-Session Procedures and Data Manage-
ment

S.3.1 Equipment Collection and Storage

Following each recording session, the Main, Side, and
Head Cameras were collected. Video files from the Main
and Side Cameras were uploaded to Google Drive using
specific naming conventions.
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(a) Main Camera Positioning

(b) Side Camera Positioning

Figure 2. Both labeled (Main and Side) cameras were set up to
capture body movement with some flexibility beyond the restricted
area.

S.3.2 Video Uploading and Naming Conventions

Videos were uploaded to designated folders in Google
Drive, categorized by camera type:

• Main Camera videos were stored in the
MainCamera/ folder and named using the for-
mat Main # (where # denotes the participant ID).

• Side Camera videos were stored in the
SideCamera/ folder, with the naming format
Side #.

• Head Camera videos were stored in the
HeadsetCamera/ folder, named Headset #.

We will be releasing the dataset, along with the code

Figure 3. Participant Presenting the Prompt to the Side Camera

S.4 Data Processing and Annotation

S.4.1 Frame Extraction and Timestamping

All recorded videos were segmented into individual
frames using the video split.py1 script, with outputs
saved to a temporary folder for subsequent processing. Key
frames, marking the beginning and end of each activity,
were identified: the starting frame was noted as the mo-
ment the participant set the prompt paper aside, while the
end frame was marked just before the participant reached
for the next prompt. The initial clap served as a synchro-
nization point across all three cameras, with the frame of
the clap identified in each recording.

S.4.2 Camera Synchronization

Frames from the main and head cameras were aligned
using the move frames.py1 script, ensuring that each
frame sub-folder corresponded accurately to a specific
recording session. Frames were automatically renamed
with a numerical suffix, starting from 1, to facilitate con-
sistency across datasets.

S.4.3 Mesh Labeling and Annotation

Human mesh labeling was performed using the HMR
model, which was run on an NVIDIA 4090 GPU to max-
imize efficiency. Labels were synchronized with the Head
Camera frames, with further renaming handled by the
rename main label.py1 script, ensuring alignment
between datasets for analysis.

1This script is located in the dataset folder within our code’s files.



S.5 Final Dataset Preparation and Cleanup
S.5.1 Frame Deletion and Cleanup

To optimize storage and maintain data quality, re-
dundant or unaligned frames were removed using the
deleteUnlabel.py1 script. Specifically, frames from
the Head Camera without corresponding labels were
deleted, as were Main Camera labels without matching
frames in the Head Camera data.

S.5.2 Dataset Finalization

The cleaned and processed frames were organized into a
final dataset folder, ensuring alignment between the Main,
Side, and Head Camera recordings. This dataset was pre-
pared for subsequent analysis.

S.6 Action Prompts for Participants
Participants performed a set of loosely-defined actions

in front of the cameras, facing the Main Camera while the
Side and Head Cameras recorded from alternative angles.
The prompts included are listed in Table 1.

S.6.1 Prompt Selection Reasoning

We selected these prompts for our fisheye view-to-mesh
generation experiment because they emphasize activities in-
volving a wide range of arm movements and dynamic body
postures, providing diverse and challenging data for accu-
rate 3D reconstruction. Activities such as sweeping the
floor, raking leaves, and shoveling the ground involve broad
arm sweeps and bending motions, capturing extended arm
positions and varied postural changes. Similarly, tasks like
stirring a big cauldron and flipping a pancake highlight rota-
tional arm movements and interactions with imaginary ob-
jects, adding complexity to the dataset. This focus on arm-
centric activities ensures that the dataset covers a wide range
of human motion that reflects everyday physical activities.

To enhance the variability and richness of the dataset,
we also designed the experiment to encourage participants
to introduce natural variation in how they performed each
activity. For example, stirring a big cauldron could be done
with different arm trajectories, speeds, and stances, while
activities like throwing a frisbee or hitting a tennis ball al-
lowed for differences in angle, intensity, and follow-through
motion. Even simpler tasks like clapping or stretching arms
offer opportunities to capture subtle differences in execu-
tion, such as variations in arm height or motion path. These
variations help to ensure the dataset captures a broad spec-
trum of movement styles and realistic body configurations.

By focusing on arm movements and dynamic postures,
we aimed to create a dataset that challenges mesh genera-
tion algorithms to handle large-scale limb movement and
body articulation effectively. The inclusion of a fisheye

Table 1. Grouped activities under Personal Care, Household, and
Outdoor/Leisure.

Category Prompt

Personal Care Brushing Teeth
Combing Hair
Reading a Book
Stretching Arms
Lunges
Arm Circles
Drinking a Cup of Water
Fanning Yourself
Taking Bites out of a Burger

Household Activities Sweeping Floor
Ironing Clothes
Washing Dishes
Stirring a Big Cauldron
Vacuuming the Floor
Stuffing a Bag
Flipping a Pancake
Swatting a Fly with a Flyswatter
Pouring Many Glasses of Water
Pulling out a Drawer and Closing It

*Outdoor/Leisure Activities Clapping
Raking Leaves
Shoveling the Ground
Throwing a Frisbee
Flying a Kite
Hitting a Tennis Ball
Fishing (Casting a Line)
Skipping Rocks
Walking a Dog

camera mounted on the head complements the front and
side views by capturing a broader field of view, ensuring
that even when parts of the body are occluded in one per-
spective, they are likely visible in another. This compre-
hensive approach allows us to build a robust foundation for
advancing 3D human pose and shape reconstruction.

S.7 Data Processing and Evaluation Metrics

S.7.1 Performance Evaluation Metrics

For assessing human mesh accuracy, the Mean Per Joint
Position Error (MPJPE) and Procrustes-aligned MPJPE
(PA-MPJPE) metrics were used. Both metrics were derived
from code embedded within the EgoHMR model scripts,
providing a basis for evaluation.

S.7.2 Model Efficiency and Runtime Analysis

To support real-time applications in AR/VR and
robotics, Fish2Mesh is intentionally designed to be
lightweight while maintaining strong reconstruction perfor-
mance. As shown in Table 2, our model uses only 7.5 M



Table 2. Comparative results of model complexity.
GFLOPs Parameters Model Size Inference

Fish2Mesh (Ours) 4.74 7.5 M 48.19 MB 4.47 ms
4DHumans 125.64 730.3 M 2583.98 MB 14.21 ms
EgoHMR 12.47 46.0 M 1798.96 MB 5.61 ms
FisheyeViT 85.36 167.5 M 650.12 MB 9.88 ms

parameters, requires 4.74 GFLOPs, and has a model size of
48 MB, which is significantly smaller than EgoHMR (46 M,
12.47 GFLOPs, 1.8 GB) and FisheyeViT (167.5 M, 85.36
GFLOPs, 650 MB). This enables a fast inference time of
4.47 ms, outperforming EgoHMR (5.61 ms) and Fisheye-
ViT (9.88 ms) in runtime speed.

To achieve this, we deliberately avoid large vision back-
bones and egocentric-specific architectures like EgoFormer
and EgoViT, which either introduce incompatible attention
mechanisms or lack architectural flexibility. Instead, we
leverage the Swin Transformer due to its hierarchical de-
sign and seamless integration with our proposed Egocentric
Positional Embedding (EPE). This pairing enables both ge-
ometric adaptability and runtime efficiency within a com-
pact design footprint.

S.8 Related Datasets and Literature

S.8.1 Datasets Considered

In this section, we summarize the various datasets ex-
plored throughout our research on egocentric 3D human
pose estimation and motion capture. Each dataset is de-
scribed by its primary purpose, content, and notable details.
Additionally, we provide a section for datasets ultimately
selected for model training and evaluation.

Table 3 summarizes the distribution of various camera
types and mounting setups to evaluate generalization across
our explored datasets. These include first-person footage
captured with different device specifications and custom
rigs with certain field of view (FOV) and sensor charac-
teristics. Our model demonstrates consistent performance
across variations, suggesting strong generalizability across
multiple optical distortions and viewpoints.

Table 3. Comparison of camera specifications across datasets.
Dataset Camera(s) Focal Length1 FOV Mount Setup

ECHP GoPro HERO9 16.4 mm 155° Helmet-mounted2

Ego4D Varies3 Varies Varies Varies
Mo2cap2 N/A N/A 182° Hat-mounted

EgoPW N/A N/A N/A
Helmet-mounted,
downward facing

Fish2Mesh
(Ours)

Insta360
ONE X2 7.2 mm 180° / 360° Head-mounted

S.8.1.1 Reviewed Datasets

• Mo2Cap2: A mobile 3D motion capture dataset col-
lected using a cap-mounted fisheye camera, designed
for real-time 3D motion estimation in egocentric set-
tings. This dataset includes both synthetic fisheye
training data and references the MPII Human Pose and
Leeds Sports Pose (LSP) datasets for broader applica-
bility [13].

• xR-EgoPose: Created for 3D egocentric pose estima-
tion from a headset-mounted camera, this dataset is
widely used in the development of VR and AR ap-
plications. It also includes references to datasets like
Mo2Cap2, Human3.6M, COCO, and MPII to enhance
training diversity [10].

• Ego4D: This large-scale egocentric video dataset
spans over 3,000 hours of global footage, capturing di-
verse everyday activities. It is supplemented by sev-
eral other datasets, including HowTo100M and AVA
Speech, making it valuable for multimodal AI research
[4].

• EgoPW: A dataset specifically designed for egocentric
3D human pose estimation in varied environments, in-
tegrating weak supervision to aid model training. The
dataset’s scene-aware version, EgoPW-Scene, includes
additional real-world variability for robust model per-
formance [12].

• EgoWholeBody: Contains over 700,000 frames with
detailed annotations, created to support whole-body
motion capture in egocentric views using a fisheye
camera. The dataset includes SMPL-X model frames,
with augmentation from synthetic sources like Mix-
amo for enhanced body and hand realism [11].

• EgoBody: A synthetic dataset designed for egocentric
whole-body pose estimation with significant variabil-
ity in body shapes, actions, and environmental scenes.
EgoBody is commonly used with the EgoWholeBody
dataset to train advanced motion capture models [14].

• UnrealEgo: A dataset aimed at robust egocentric 3D
human motion capture, featuring synthetic environ-
ments rendered in Unreal Engine. It is used primar-
ily for evaluating model performance in diverse virtual
scenarios [1].

• EgoCap: Designed for egocentric marker-less motion
capture, this dataset uses two fisheye cameras to cap-
ture complex motion data. It includes both synthetic
and real-world data for enhanced model accuracy [9].

• EgoFish3D: A self-supervised learning dataset cap-
tured using a fisheye camera, focused on egocentric
3D pose estimation. This dataset also includes syn-
thetic training data to facilitate model learning [8].

• Human3.6M: A large-scale 3D human sensing dataset



used as a benchmark for human pose estimation. It
provides high-resolution images with 3D ground truth
annotations [3, 5].

• COCO: A widely used dataset for object detection and
segmentation tasks, offering diverse annotations for
over 80 object categories. It provides a foundational
resource for training egocentric pose models [7].

• MPII: Created for 2D human pose estimation, the
MPII dataset serves as a standard benchmark for eval-
uating human pose models. It covers a wide range of
everyday activities in real-world settings [2].

• LSP: The Leeds Sports Pose (LSP) dataset is specif-
ically designed for human pose estimation in sports
contexts. It includes challenging poses and occlusions,
making it valuable for training robust pose estimation
models [6].

S.8.1.2 Final Datasets Used in Analysis

The final list of datasets employed as shown in Table 3 our
research model’s training and testing phases.

• ECHP [8]: Dataset of daily human actions used in
EgoFish3D with GoPro cameras with fish-eye lenses
as a basis for egocentric 3D pose estimation, with em-
phasis on hand pose data.

• Ego4D [4]: A large-scale egocentric video dataset
comprising over 3,000 hours of video from around the
world. Additional datasets mentioned within Ego4D
include HowTo100M, VoxCeleb, AVA Speech, AVA
Active Speaker, AVDIAR, and EasyCom.
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