SpikePack: Enhanced Information Flow in Spiking Neural Networks
with High Hardware Compatibility

Supplementary Material

A. Mutual Information Analysis of SpikePack

In this appendix, we provide a formal analysis of the mutual
information properties of the proposed SpikePack neuron
model, comparing it with the traditional Leaky Integrate-
and-Fire (LIF) neuron model. This analysis aims to show
that SpikePack neurons retain more information between
pre-synaptic inputs and post-synaptic outputs, thereby re-
ducing information loss during spike transmission.

A.l. Problem Statement

Consider a spiking neuron receiving binary input spikes
over T time steps from N pre-synaptic neurons. Let S! €
{0,1}¥*T denote the input spike matrix, where each el-
ement s,l,b,t represents the spike from the n-th neuron at
time step ¢. Each spike sﬁm is assumed to be an inde-
pendent Bernoulli random variable with parameter p, i.e.,
s,l,“t ~ Bernoulli(p). The synaptic weights are represented
by w € R¥, where each weight w,, is drawn independently
from a Gaussian distribution A"(0, 0'2).

Our objective is to compute and compare the mutual
information 7(S';s') between input and output spikes for
both SpikePack and LIF neurons.

A.2. Mutual Information in SpikePack Neurons

Accumulated Membrane Potential In the SpikePack
neuron, the accumulated membrane potential vlg is defined
as:

vé =w'S! q, (11)

where q = [Tt 77=2 .. 79T

of leakage across time steps.

incorporates the effect

Distribution of vlg Given that the input spikes are inde-
pendent Bernoulli random variables and the weights are
independent Gaussian random variables, the accumulated
membrane potential vlg is a sum of independent random
variables. By the Central Limit Theorem, vé approximates
a Gaussian distribution when N is large.

Mean of vlg:
N
poy = E[v}] = > Efw,] Y E[sh Jae =0, (12)

n=1 t=1

since E[w,] = 0.

Variance of v,

2

T

2

op =E[vy] = 0> Np(1 —p) (Z qt> : (13)
t=1

where ¢, = 7t L.

l . .
, 1s approximately

its differential entropy is:

Differential Entropy of v/ Since v

Gaussian with variance 03, ,
g

1
h(vé) =3 log2(27rea§;). (14)

Conditional Entropy h(vl|s') The SpikePack neuron

generates output spikes s' by quantizing the continuous
membrane potential vé with a quantization step size 6. This
process introduces quantization noise, as vé is mapped to
the nearest discrete level defined by #. Following the ap-
proach in [45], we assume that this quantization noise is
uniformly distributed over [—£,2]. This assumption is
valid when the quantization step size 6 is relatively small
compared to the variance of vé, and the signal vé is approx-
imately Gaussian and sufficiently random.

Given that the quantization noise ¢ is uniformly dis-
tributed over [fg, g] the probability density function of
qis:

fla) = {g

The conditional entropy h(vlg|sl) represents the uncer-

for -4 <qg<?,

15
otherwise. (15)

. . o . l .
tainty introduced by quantizing v, and is equal to the en-

tropy of the quantization noise ¢ over the interval [—g, g] .
The entropy of a continuous uniform distribution is calcu-

lated as:

0/2
h(vl]s") = / f@)logs(F(@)da. (16)

—0/2
Substituting f(q) = %, we get:
h(vyls') = log, (). (17)

To refine this result, we apply a correction factor for the
entropy of the uniform distribution, considering its vari-
ance. For a uniform distribution over [—%, 2], the vari-
[

ance is Var(q) = 1; [45]., so the standard deviation is

%. Thus, the correction term log,(1/12) accounts for the
spread of the distribution:

h(vlg|sl) = logy(#) — logy(V12). (18)

This refined expression for the conditional entropy
h(vl|s") accurately reflects the quantization effects within
the SpikePack neuron model.

Mutual Information Calculation The mutual informa-
tion between vlg and st is:

1. 1 1. 1 1207,
I(vy;s') = h(vy) — h(v,yls’) = 3 log, 072(] . (19)
Since s is a deterministic function of vlg, we have:

1(8%s") = I(v);s"). (20)

Thus, the mutual information for the SpikePack neuron

is:
1 120’,
ISP = 5 10g2 02 . (21)

A.3. Mutual Information in LIF Neurons

Approximated Membrane Potential In the LIF neuron,
the recursive membrane potential update complicates a di-
rect calculation of mutual information. We approximate the
membrane potential at time ¢ as:

v =w'sl, (22)
ignoring temporal dependencies and leakage.
Distribution of v; Each v, is approximately Gaussian
with mean zero and variance:
oo =’ Np(1 - p). (23)

Probability of Spiking and Entropy of Output Spikes
The probability of an output spike at time ¢ is:

0
P(sgut,t =1)=0Q ()) (24)

T,y
Ut

where Q(-) is the Q-function. Using this probability, the
entropy of the output spike at each time step is:

H('S(/)ut,t) = P(‘S(I)ut,t = 1) logQ P(Stl)ut,t = 1)

, , (25)
- P(Sout,t = O) IOgQ P(Soumt = O)

Upper Bound on Mutual Information Assuming inde-
pendence across time steps, the total mutual information is
bounded by:

T
Ie = I(Shsh) Z Shutt) (26)

A.4. Comparative Analysis and Numerical Estima-
tion

Parameter Settings We use the following parameters for
both theoretical and numerical estimation:

* Number of pre-synaptic neurons: N = 16

* Number of time steps: T' = 16

» Weight variance: 02 = 1

* Input spike probability: p = 0.5

* Membrane time constant: 7 = 2

SpikePack Mutual Information Calculation Compute

012;5 using Eq. (13):

o2 =4(2'5 —1)”. 27)

60
Substitute Ugl and 0 = 2—;}’ into Eq. (21):
g9

Isp =~ 15.21 bits. 28)

LIF Neuron Mutual Information Calculation For the
LIF neuron, 02, = 4 and P(sp, = 1) = Q(0.5) =~
0.3085. Usmg Eq (25), each time step contributes approxi-
mately H (s, ,) =~ 0.881 bits, leading to:

Inir < 16 x 0.881 = 14.096 bits. (29)

Comparison and Interpretation The mutual informa-
tion estimates indicate that:
* SpikePack achieves Isp ~ 15.21 bits.
e LIF Neuron achieves I < 14.096 bits.

This demonstrates that SpikePack retains more informa-
tion, validating the theoretical analysis.

A.5. Empirical Validation

To validate our theoretical findings, we conducted Monte
Carlo simulations to estimate I(S';s!) for both neuron
models under various configurations of N and 7. The
results, depicted in Figure 4, Section 3.2, confirm that
SpikePack neurons consistently achieve higher mutual in-
formation than LIF neurons across different settings, rein-
forcing the conclusion that SpikePack effectively reduces
information loss during spike transmission.

This analysis shows that the SpikePack neuron model
achieves higher mutual information between input and out-
put spikes than the LIF neuron model. By aggregat-
ing information across time steps before spike generation,
SpikePack reduces information loss and enhances transmis-
sion efficiency, supporting more effective information flow
in SNNG.

B. Experimental Details

In this section, we provide a comprehensive description of
the datasets, model architectures, and hyperparameter set-
tings used in our experiments. This includes details on both
static image and neuromorphic datasets, as well as specific
training configurations for each task.

B.1. Datasets

We evaluate SpikePack on both static and neuromorphic
datasets to assess its performance across a range of visual
tasks.

Static Datasets

e ImageNet [4]: A large-scale image dataset containing
over one million images categorized into 1,000 classes.
This dataset provides diverse and complex visual content,
which is crucial for evaluating classification performance
on high-resolution images. For ImageNet, we resize im-
ages to 224 x 224.

e COCO 2017 [27]: A widely-used benchmark for object
detection, containing 118,000 training images and 5,000
validation images with 80 object categories. We use this
dataset to test SpikePack on object detection tasks.

* ADE20K [57]: A semantic segmentation dataset with
over 20,000 training images covering 150 classes.
ADE20K provides a challenging setup for testing dense
pixel-wise prediction tasks, such as segmentation.

Neuromorphic Datasets

e CIFAR10-DVS [21]: A neuromorphic adaptation of
CIFAR-10, generated using a Dynamic Vision Sensor
(DVS) to capture asynchronous event streams. The
dataset consists of 10 classes, matching the original
CIFAR-10 categories, with each sample transformed into
a sequence of events.

* DVS-Gesture [1]: A dataset designed for gesture recogni-
tion, containing hand gestures captured from different in-
dividuals under varying lighting conditions. The dataset
offers dynamic and complex temporal patterns that chal-
lenge spiking models.

e N-Caltech101 [35]: This dataset is a neuromorphic ver-
sion of the Caltech101 object classification dataset, gen-
erated through a DVS camera that records event-based se-
quences for 101 object categories.

B.2. Hyperparameters and Configuration

For our experiments, we evaluate SpikePack in two settings:
direct training and ANN-to-SNN conversion.

In the direct training setup, we adhere to the settings
used by Zhou et al. [58] for comparability and consis-
tency. For ImageNet datasets, the input resolution is set to

224 x 224, unless otherwise noted in the main text. Neuro-
morphic datasets are resized to 48 x 48 to streamline compu-
tational costs. Batch size is dynamically adjusted according
to the specific model architecture, maximizing memory us-
age without exceeding 40 GB of GPU memory. We employ
native Automatic Mixed Precision (AMP) for all training
processes to balance computational efficiency and memory
usage. The initial learning rate is set to 0.001, and models
are trained for 300 epochs unless otherwise specified. The
membrane time constant 7 is set to 2 by default, and thresh-
old # is dynamically adjusted as @ = T/27, where T is the
number of time steps. This approach progressively reduces
the threshold over time, creating finer divisions of the in-
put signal, which improves information transmission over
longer sequences.

For the ANN-to-SNN conversion experiments, we first
calibrate € by selecting 10% of the training data. This sub-
set is used to set 6 in a way that minimizes the risk of over-
flow during inference. For evaluation, this threshold 6 re-
mains fixed to ensure stable performance across the entire
test set. During conversion, @ is allocated independently for
each channel, enabling fine-grained control over the acti-
vation dynamics and improving the robustness of the con-
verted SNN model.

The computation of Synaptic Operations (SOP) follows
the same procedure as Zhou et al. [58], where SOP is de-
fined as SOP = fr x FLOPs x T'. Here, fr represents the
firing rate, or the proportion of spikes generated over the
total possible activations, allowing for a direct comparison
of energy efficiency across models with different firing dy-
namics and time steps.

For object detection and semantic segmentation tasks,
we apply the ANN-to-SNN conversion approach, given the
high accuracy already achieved through this method. This
setup maintains the accuracy benefits of the ANN models
while allowing efficient deployment in SNN form, leverag-
ing the sparsity and reduced computational costs enabled by
SpikePack.

C. Hardware Experiments

To evaluate the performance of SpikePack neurons in com-
parison to traditional Leaky LIF neurons on hardware, we
designed a customized digital processor resembling a neu-
romorphic chip. This processor processes binary spike in-
puts and synaptic weights, performing event-driven accu-
mulation of synaptic currents. The architecture comprises
three primary components: (1) a spike address encoder,
which encodes pre-synaptic input spikes to addresses for
retrieving the corresponding synaptic weights, (2) an ar-
ray of processing elements (PEs) with vectorized multiplex-
accumulate logic, and (3) parallel neuron node logic respon-
sible for generating output spikes, as depicted in Figure.8.
The customized architecture builds upon and extends the

Local Weight Address
R
5 <
k2 To Ulnt = é > 5-,‘
8 e
5 OneHot é nd 5 :: §-
2 | Generator = ®—’ 5 5
5] <=) o
5 1) =
Z | Remaining o T
Spikes = | [=N T LN e
° U 5
g 5|,
Input Spikes oy =1 [(PO P 5 g
N > aPe
Global Weight L) 2 E B 2
Address | 5P s
Generation - % e
SpikeLen=16 Address x64 Processing Elements x16 Neuron
Encoder Front-end (Mux-Acc Unit) Node

Figure 8. Hardware architecture of the neuromorphic-like proces-
sor demo customized for SpikePack or LIF neuron.

FireFly-S[24] implementation.

The processor was tailored for both SpikePack and LIF
neurons, using a shared encoder and PE logic but dif-
fering in neuron implementation logic. Table.7 presents
the resource consumption of the designs implemented on
an XCZU3EG FPGA. In this analysis, we focus on logic
resource utilization, excluding on-chip RAM, as synaptic
weight data is directly fed from the simulation environ-
ment. The device mapping results of two implmentations
are shown in Figure.9.

B, W

7k
L .
;I|E I“# ik

Figure 9. Hardware implementation device map of neuromorphic-
like processor for SpikePack (right) and LIF (left) neuron on
xczu3eg FPGA. Color green area indicates the logic of the pro-
cessing elements, color yellow indicates the logic of the SpikePack
or the LIF neuron and color red indicates the logic of the address
encoder.

The SpikePack implementation demonstrates a slight re-
duction in resource consumption compared to the tradi-
tional LIF neuron. This efficiency arises from the elimi-
nation of the need to store long-term membrane potential in
hardware. Additionally, the SpikePack implementation con-
sumes less power, operating at 0.808 W compared to 0.816

W for the LIF implementation, both running at 300 MHz.

Table 7. Resource consumption breakdown of customized
neuromorphic-like processor for SpikePack and LIF neuron.

LUTs | FFs | CARRYSs
Total | 9496 | 1042 704
. Encode 46 18 0
SpikePack —pp 4673 | 1024 256
Node | 4521 | 0O 448
Total | 9850 | 1302 768
Encode 46 18 0
LIF PE | 4673 | 1024 256
Node | 4875 | 260 512

The ResNet inference latency was measured using a
cycle-accurate simulator of the proposed hardware archi-
tecture. The spike encoder effectively eliminates redun-
dant spikes, resulting in an inference latency that is strongly
correlated with the sparsity level of the spike input. As
SpikePack inherently produces a more sparse spike output
pattern, it achieves lower inference latency and energy per
inference compared to the traditional LIF design.

	Introduction
	Related Work
	Methodology
	Limitations of LIF Neurons
	Low Information Capacity in Spike Transmission
	Inefficient Hardware Utilization

	SpikePack
	Improved Information Capacity in SpikePack
	Parallel Computation and Hardware Utilization
	Efficient Gradient Propagation

	Experiment
	Experimental Setup
	Image and Neuromorphic Data Classification
	Object Detection
	Semantic Segmentation
	Ablation Studies
	Hardware Compatibility
	Discussion

	Mutual Information Analysis of SpikePack
	Problem Statement
	Mutual Information in SpikePack Neurons
	Mutual Information in LIF Neurons
	Comparative Analysis and Numerical Estimation
	Empirical Validation

	Experimental Details
	Datasets
	Hyperparameters and Configuration

	Hardware Experiments

