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Supplementary Material

A. Failure Cases and Limitations
Failure Cases We visualize typical failure cases in
Fig. S.1. In Case 1, the artifact Gaussians are small and lo-
cated far from the painting’s surface. When traced from the
forward view, it belongs to the painting, whereas from the
lateral view, it belongs to the wall. In both views, this Gaus-
sian only belongs to one object, albeit different ones. As a
result, it is not considered ambiguous and we cannot elim-
inate them despite being clear artifacts. Case 2 and 3 share
similar issues. Our Gaussian Instance Tracing (GIT) is con-
sistent with the rendering process and terminates when the
accumulated opacity reaches 1. Therefore, if a Gaussian
belongs to an object and is partially covered by a highly
opaque surface, it cannot be flagged as ambiguous. These
limitations degrade performance on fine-grained details, af-
fecting hierarchical segmentation and object extraction.
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Figure S.1. Failure cases on Replica.

Limitations We discuss two limitations that are valuable
to address as future work.

First, although our motivation stems from leveraging the
inherent consistency of Gaussians as a more explicit rep-
resentation—ideally assigning one Gaussian per object or
part—the approach still relies on a neural implicit frame-
work with alpha blending for rendering. Consequently,
there is a gap between true 3D surface geometry and the
rendering-based association of Gaussians. As the level of
granularity increases, especially for fine-grained details or
texture-like patterns, the premise of consistent masks and
the assumption about ambiguous Gaussians weaken. This
also can be seen from Fig. 1 and Fig. 7 in the main paper,
where hierarchical segmentation and object extraction ex-
hibit more artifacts when the detail is refined to parts of a
single body (e.g., Gundam) or object (e.g., camera). While
our method is capable of robust segmentation and object
extract on common objects under diverse scenarios, these
findings underscore a recurring dilemma: while implicit
representations such as Neural Radiance Fields (NeRF) [7],
Gaussian Splatting [2, 3], and DMTet [9] are relatively easy

to optimize, fully explicit representations are often better
suited for physics-based rendering and efficient simulation.

Second, although the GIT operation is comparable in
speed to forward rendering, merging inconsistent maps re-
mains a relatively time-consuming step, as detailed in Ap-
pendix B.2. Future research could investigate more efficient
data structures and algorithms to further mitigate training
overhead. Nevertheless, our Nonetheless, our GIT-guided
density control works as efficient as the original density
control in original 3D Gaussian Splatting (3DGS) [3].

B. Method Details
B.1. Scalability of GIT
The weight matrix W ∈ RN×T×L, where N is the number of
Gaussians, T the maximum number of patches in any single
view, and L the number of views, is conceptually defined
but not explicitly used during implementation. In practice,
we accelerate GIT by first computing a temporary N × T
matrix sequentially for each view, which is then reduced
to an N -dim vector storing the patch ID with the highest
probability. The vectors for all L views are combined into a
N × L matrix for patch merging and GS refinement. Thus,
our method only maintains a temporary N × T matrix and
a cumulative N × L matrix during training, allowing us to
handle scenes with a large number of objects efficiently.

B.2. Scalability of patch merging
This step involves computing patch similarity by tracing all
relevant Gaussians and checking whether they belong to the
same patch based on majority votes across all views. The
theoretical upper bound on complexity is O(N2·T 2). While
in implementation, we avoid computing similarities for all
primitive-level patch pairs within a view based on SAM’s
hierarchical information: only patches that fall within the
same region of coarser-level masks are considered for merg-
ing. Furthermore, patch similarity is computed only over
co-visible views shared by the two Gaussian sets, rather
than across all views. Combined with our GIT acceleration,
they ensure efficiency in large-scale, multi-object scenes.

C. Method Comparison
Previous work [1, 11] also proposes an overlay mask solu-
tion to alleviate inconsistencies in multi-view masks gener-
ated by SAM [5]. Here, we provide a detailed discussion
comparing our method with these approaches.

EgoLifter EgoLifter [1] discards information about over-
lapping regions and simply overlays all masks in image



Table S.1. The selected id lists used for 3D object extraction experiment in Replica.

Scene ID list

office0 3,4,7,9,11,12,14,15,16,17,19,21,22,23,29,30,32,34,35,36,37,40,44,48,49,57,58,61,66

office1 3,8,9,11,12,13,14,17,23,24,29,30,31,32,34,35,37,43,45

office2
0,2,3,4,6,8,9,12,13,14,17,23,27,34,38,39,46,49,51,54,57,58,59,63,65,68,69,70,72,73,74,75,77,78
80,84,85,86,90,92,93

office3 1,2,8,11,12,15,18,21,22,25,29,32,33,42,51,54,55,56,60,61,70,82,85,86,88,86,97,101,102,103,110,111

office4 3,4,5,6,9,13,16,18,20,23,31,34,47,48,49,51,52,56,60,61,62,65,69,70,71

room0
1,2,3,4,6,7,8,11,13,15,18,19,20,21,22,24,30,32,34,35,36,39,40,41,43,45,47,49,50,51,54,55,58,
61,63,64,68,69,70,71,72,73,74,75,78,79,83,85,86,87,90,92

room1 3,4,6,7,8,9,11,12,13,15,17,18,19,21,22,23,24,27,30,32,33,35,37,39,40,43,45,46,48,50,51,52,53,54

room2
2,4,5,10,14,15,17,18,19,20,22,24,26,27,28,29,31,32,34,36,38,39,40,42,44,46,47,48,49,52,54,55,56,
57,58,59,61
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Figure S.2. Remaining visualization results on NVOS.

space to obtain a one-hot segmentation for each pixel. How-
ever, due to the randomness of the topmost mask across dif-
ferent views, EgoLifter’s solution fails to resolve inconsis-
tencies in the overlapping areas.

Omniseg3D Similarly to our approach, OmniSeg3D [11]
also divides the 2D image into disjoint patches by overlap-
ping the SAM masks. it models the hierarchical structure
within these patches by measuring correlations, character-
ized by the number of masks that contain the corresponding
masks. During contrastive lifting, it enforces this hierarchy
through an explicit ordering regularization. While the con-
cept is promising, inconsistent SAM predictions can pro-
duce ambiguous features across different hierarchical lev-

els, especially in fine-grained cases. This issue is evident in
the qualitative comparisons in the main paper.

GarField GarField [4] optimizes a scale-conditioned
affinity field in an attempt to alleviate inconsistencies in
multi-view masks. However, its scale conditioning is overly
sensitive and operates as a black-box, making it challenging
to use during the inference phase.

Gaga While both our method and Gaga [6] leverage the
mask-Gaussian relationship, Gaga focuses on 3D lifting
with mask ID association, whereas our method addresses
inconsistent SAM masks and refines Gaussians, benefiting
general 3D segmentation lifting methods. Gaga traces via
Gaussian center projection, which struggles with occlusion,
while our reverse rasterization offers more precise, view-
consistent alignment. Moreover, Gaga uses a sequential
3D memory bank, where assignments are fixed once added,
limiting effective cross-view aggregation. In contrast, our
majority voting across all views enables more robust and
consistent segmentation.

Ours We obtain a single instance map by overlapping all
masks and treating each overlapping region as a disjoint in-
stance patch. We then perform consistent masking and GIT-
guided density control on these primitive-level patches, pro-
viding clear guidance during contrastive lifting. This en-
sures that features are distinctly grouped or separated, lead-
ing to sharper boundaries, clearer feature maps, and flexible
segmentation or object extraction across various levels of
granularity in our experiments.

D. Experiments: 3D Object Extraction
D.1. Evaluation Details
We render the extracted 3D object into novel views to gen-
erate its corresponding RGB image. The regions where the
RGB values exceed zero are utilized as a mask to compute
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Figure S.3. More visualization results on Replica.

Table S.2. Quantitative results of 3D object extraction on Replica across all scenes.

Method office0 office1 office2 office3 office4 room0 room1 room2 avg. mIoU avg. PSNR

Gaussain Grouping [10] 23.7 45.9 25.5 30.6 30.2 22.5 38.5 20.1 29.6 13.4
FlashSplat [8] 47.5 45.9 39.6 36.9 27.5 40.6 39.8 36.6 39.3 16.9
Egolifter [1] 67.4 59.6 48.9 54.8 59.4 50.7 53.7 50.1 55.6 20.1
Gaga [6] 45.1 47.8 37.8 37.2 40.4 39.3 36.9 44.5 41.1 17.6
Ours 80.7 76.0 66.1 69.8 71.7 67.0 72.0 73.4 72.1 22.6

Table S.3. The detailed PSNR of 3D object extraction on Replica across all scenes.

Method office0 office1 office2 office3 office4 room0 room1 room2 avg. PSNR

Gaussain Grouping [10] 16.0 22.8 10.5 11.2 12.3 10.3 12.7 11.7 13.4
FlashSplat [8] 21.2 24.5 14.4 14.0 14.9 14.8 15.2 16.2 16.9
Egolifter [1] 26.5 29.1 16.3 16.0 19.5 17.0 17.4 19.1 20.1
Gaga [6] 22.4 27.0 13.5 13.9 16.7 14.5 14.7 18.0 17.6
Ours 28.1 29.9 18.9 20.0 22.0 19.4 20.3 22.3 22.6

the IoU with the ground-truth mask. For PSNR calculation,
we restrict the computation to a specific region defined by
the bounding box of the ground-truth mask, expanded out-
ward by 10 pixels. This ensures that the evaluation focuses
on the relevant object regions while reducing the influence
of background areas.

D.2. Testing Split
We select the majority of instances from the Replica dataset,
excluding floors, ceilings, excessively large walls, and low-

quality objects. The full list is provided in Tab. S.1. To more
accurately evaluate the quality of the extracted 3D objects,
we filter out test views where the objects are occluded.

E. More Experiment Results

We provide detailed results on Replica in Tab. S.2 Tab. S.3.
Additionally, we present further qualitative results on
Replica in Fig. S.3 and on the remaining NVOS scenes in
Fig. S.2.
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