SpatialSplat: Efficient Semantic 3D from Sparse Unposed Images

Supplementary Material

6. Details of Contrastive Loss

As described in Sec. 3.3, the complexity of the Contrastive
loss scales quadratically with the number of pixels. Ex-
isting per-scene optimization methods address this by ran-
domly selecting a subset of pixels for loss calculation in
each iteration. The number of pixels is typically limited
to less than 4096 due to the memory constraints of main-
stream GPUs. However, we find that this strategy yields
minimal results in feed-forward 3DGS. For a 256 x 256 im-
age, fewer than 6% of the pixels’ corresponding Gaussian
parameters are updated in each iteration. This significantly
impacts training efficiency and leads to unsatisfactory per-
formance in our experiments. To address this, we propose
a linear-complexity approach for accurately estimating the
contrastive loss, aiming to update all Gaussian parameters
within a single iteration.

We first consider the similarity loss for primitives be-
longing to the same instance, corresponding to the first
part of right side of Eq. 6. Given a set of binary masks
M = {MP* | k = 1,2,...,m} extracted from SAM, We
flatten both the rendered instance feature map F'; and all
masks into F'; € R"*N and M te R™, where n represents
the total number of pixels. Based on the masks, we sepa-
rate the features for each instance, shuffle their order, and
obtain a new feature map F';. Note that the inter-instance
spacing in F'] remains preserved. We then compute the co-
sine similarity between the features at the same positions in
F; and F7, resulting in a computation with a complexity
of O(n). Intuitively, instead of calculating the similarity
between each primitive and all other primitives within an
instance, we compute the similarity between each primitive
and a single other primitive in the instance. This is feasible
because primitives within the same instance exhibit highly
consistent features. For the similarity computation between
primitives from different instances, as shown in the remain-
ing terms on the right side of Eq. 6, wwe represent each in-
stance by the average feature of its primitives and compute
its similarity with other instances. This results in a com-
plexity of O(m?), which can be ignored as N > m. Thus,
we successfully estimate Eq. 6 with a complexity of O(V),
ensuring that every primitive participates in the computation
and receives updates. Experimental results demonstrate the
high effectiveness of our approach.

7. More Implementation Details

For SpatialSplat, we employ the AdamW optimizer, setting
the initial learning rate for the backbone to 2 x 105 and
other parameters to 2 x 104. The model is trained using

8 A100-40G GPUs with a total batch size of 128, which
takes approximately 2 days to complete. Techniques such
as gradient accumulation and Automatic Mixed Precision
(AMP) are applied to increase the effective batch size and
reduce memory consumption. All methods take images at a
resolution of 256 x 256 as input. For feed-forward methods,
we follow [44] and set the input image distance to 25. We
select four views between the input images for testing, and
no masks are used to fill regions without primitives.

7.1. Large Spatial Model

Since Large Spatial Model only provides pretrained weights
without code for training from scratch, we directly use the
pretrained model for comparison. To ensure a fair compar-
ison, we use the same training dataset, evaluation scenes,
and pretrained 2D model. As the method predicts Gaus-
sians with scale ambiguity, we use the depth maps provided
in the ScanNet dataset to recover the scale. The optimal
scale is computed using the Weiszfeld algorithm, as done in
the official implementation.

7.2. NeRF-DFF

We convert the test dataset to the COLMAP format as re-
quired by NeRF-DFF. We use five images for training and
one for testing. Each training image is first processed by
LSeg to extract a 256 x 256 x 512 feature map, which is
then used along with the original RGB image to train a fea-
ture field. The default configuration from the official imple-
mentation is used.

7.3. Feature-3DGS

We preprocess the dataset as described in Sec. 7.2. For
Feature-3DGS, we use the speed-up model with a com-
pressed feature dimension of 128, as recommended in the
paper. Each scene is trained for 7K iterations. Additionally,
we train several selected scenes for 20K iterations, but the
performance shows no significant improvement compared
to 7K iterations.

7.4. NoPoSplat

We retrain NoPoSplat using the code from the official repos-
itory. Notably, we do not apply the inference-time align-
ment trick proposed in the original paper to improve perfor-
mance. This decision is based on our observation that both
our method and NoPoSplat achieve good performance on
ScanNet without this trick.

Pl i

Input views

Y il |
RS B

FreeSplat SpatialSplat

Figure 8. Qualitative comparison results with FreeSplat.

Table 5. Quantitative comparison with FreeSplat.

Method
FreeSplat 26.62
SpatialSplat ~ 25.46

PSNR1 SSIM?T LPIPS| Gaussian Num. |
0.8485
0.8045

0.1775 104K
0.2046 87.7K

8. More Experimental Analysis

8.1. Latency and memory overhead

The time and memory consumption for each module were
measured on an RTX 4090 GPU. Each measurement was
averaged over 100 independent runs to ensure reliability.

8.2. More Details of Extension to More Views

Our SpatialSplat framework can be extended to incorporate
additional views. We designate one view as the reference
view, which is processed by Transformer Decoderl and
Heads! in Fig.2. For other views, we first tokenize them and
concatenate all feature tokens before feeding them into the
ViT encoder and Transformer Decoder2. Cross-attention
is performed between the reference view tokens and these

Table 6. Quantitative results of time and memory consumption.

Module ‘ 3D Geometry Semantic Lifting DPT Heads Rasterizer Total
Latency 31ms 26ms 17ms 4ms 78ms
Memory 3.2GB 2.5GB 0.5GB 0.2GB 6.4GB

concatenated tokens. All other operations remain the same
as in the two-view setup. Gaussian primitives are predicted
for each view, and the selective Gaussian mechanism is ap-
plied independently to each input view. The qualitative re-
sults of the extension to three views are shown in Fig.9.

8.3. Compression With FreeSplat

FreeSplat is a recent method that employs a feed-forward
network to predict 3D Gaussians. Both our method
and FreeSplat recognize that pixel-wise Gaussian predic-
tion is redundant, especially in overlapping areas. How-
ever, there are key differences between SpatialSplat and
FreeSplat. First, FreeSplat is specifically designed for ra-
diance field generation and lacks semantic awareness. Sec-
ond, FreeSplat relies on precise camera extrinsics for Gaus-
sian prediction and redundancy identification, making its
pipeline fundamentally different from ours. We primarily
compare the two methods in terms of redundancy removal
and novel view synthesis.

The performance gap between FreeSplat and our method
in novel view synthesis, as shown in Tab.6, is primarily due
to the strong geometric prior provided by camera poses.
Similar performance gap between pose-required and pose-
free methods have also been observed in[38, 46]. Notably,
SpatialSplat uses fewer primitives than FreeSplat, demon-
strating that directly identifying redundant primitives from
images is feasible. The qualitative comparison results are
presented in Fig. 5.

9. More Qualitative Results

We provide additional qualitative results on our proposed
dual-field architecture and selective Gaussian mechanism.
As shown in Fig. 10, SpatialSplat effectively identifies re-
dundant Gaussians and generates a consistent instance fea-
ture field across multiple scenes.

Importance score of input views GT Novel View Synthesis

Figure 9. Qualitative results extension to 3 views.

i R

W e
AR T
(] I

Input view Importance score Instance feature

Figure 10. More qualitative results in importance score prediction and instance feature rendering at novel views.

