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6. Implementation Details
In this section, we provide more implementation details
about task definitions (Section 6.1), network architectures
(Section 6.2), training schemes (Section 6.3), and image se-
mantic label generation (Section 6.4).

6.1. Task Definitions
Point Cloud Forecasting. Our DriveX model can gener-
ate future point clouds by estimating the depth of LiDAR-
view rays. Following [26, 63, 70, 73], the ground truth
points at future timestamps are used to initialize rays for
point cloud generation. We evaluate the performance on
nuScenes [3] validation set using the Chamfer Distance be-
tween predicted and ground truth point sets. In line with
[63, 73], we focus on evaluating points within [-51.2m, -
51.2m, -5.0m, 51.2m, 51.2m, 3.0m], a common range used
in various downstream tasks.
End-to-End Driving. We conduct end-to-end driving eval-
uation on NAVSIM dataset, a challenging non-reactive sim-
ulation benchmark that provides reliable planning assess-
ment. NAVSIM is built on the large-scale public driving
dataset OpenScene [7] and employs a resampling strategy
to reduce the prevalence of simple scenarios, resulting in a
curated dataset of 103k training samples and 12k test sam-
ples. Each sample includes a trajectory with the current
frame, 3 historical frames, and 8 future frames at a fre-
quency of 2Hz. For DriveX training, we aggregate the 3
historical frames and 4 future frames from each sample, fil-
tering overlapping frames and short sequences to construct
a dataset of 250k frames. Leveraging the nonreactive simu-
lations, NAVSIM employs closed-loop metrics centered on
the Predictive Driver Model Score (PDMS) to assess per-
formance, which is a weighted combination of five sub-
scores: no at-fault collisions (NC), drivable area compli-
ance (DAC), time-to-collision (TTC), comfort (Comf.), and
ego progress (EP).

Occupancy Prediction and Flow estimation. We ap-
ply the DriveX model to the occupancy and occupancy
flow prediction task on FlowOcc3D [30] benchmark.
FlowOcc3D extends Occ3D by incorporating occupancy-
level flow annotations derived from object bounding boxes,
alongside the original occupancy labels. The prediction
range in the ego vehicle coordinate system is [-40m, 40m]
for X, Y axes and [-1m, 5.4m] for Z axis, with voxel size of
0.4m and occupancy resolution of 200→200→16. For eval-
uation metrics, we report the mean Intersection over Union
(mIoU) for each semantic class and geometric IoU (IoUgeo)
for binary occupancy prediction, along with mean absolute
velocity error (mAVE) across categories to quantify flow
accuracy.

6.2. Network Architectures

As mentioned in the main paper, we validate the effective-
ness of the DriveX model on two representative various
tasks: end-to-end driving as well as occupancy and flow
prediction. Here, we detail the network architecture and the
design of the Future Spatial Attention (FSA) paradigm for
both tasks.

DiffusionDrive-C. We reimplement the camera-only vari-
ant of DiffusionDrive [38], utilizing the BEVFormer [35]
paradigm to construct latent 128→128 BEV features. Fol-
lowing the original DiffusionDrive configuration, we ini-
tialize planning queries using 20 cluster anchors for spatial
cross-attention with BEV features, and employ a diffusion
policy to generate 8-waypoint trajectory. Based on these
predictions, DriveX generates latent BEV representations
for three future timestamps. A three-layer FSA is then in-
tegrated to extract future information through spatial cross-
attention. Specifically, for each planning query, we sample
a total of 96 points from three future BEV representations
based on its waypoints and predicted sample offsets to form
the keys and values. The refined planning queries are sub-
sequently used to predict the final trajectory.

ViewFormer. For occupancy and flow prediction tasks, we
adopt the official implementation of ViewFormer [30]. Re-
garding trajectory prediction, we adopt the AD-MLP [37]
architecture to predict two future waypoints. Given future
states generated by DriveX, the FSA samples keys and val-
ues from predicted future BEV features with the number
of attention heads, learnable sampling points, and attention
layers set as 9, 4, and 4, respectively.



6.3. Training Schemes

While mainly following the original training protocols for
downstream tasks, we specify several key training parame-
ters and optimization settings here. In all downstream ex-
periments, the DriveX model remains frozen.

DiffusionDrive-C is trained for 40 epochs with batch size
32 on 16 NVIDIA H20 GPUs. We use the AdamW opti-
mizer [40] with a learning rate of 2e-4 and a weight decay
of 0.001. The input images are resized to 256→704. Fol-
lowing DiffusionDrive [38], we focus on a spatial range of
[-32.0m, -32.0m, -1.0m, 32.0m, 32.0m, 5.4m] and incorpo-
rate auxiliary supervision through object detection and map
segmentation tasks.

ViewFormer is trained for 24 epochs with batch size 16
on 16 NVIDIA H20 GPUs. The model is optimized using
AdamW with an initial learning rate of 2e-4 and a weight
decay of 0.01, where the learning rate is decayed by a factor
of 0.1 at epochs 19 and 23. All experiments are conducted
using a default image size of 256→704.

DriveX. The main training settings are outlined in the
main paper. We provide additional implementation de-
tails here. To obtain comprehensive geometric information
of the environment, we aggregate LiDAR points from the
past four frames and future five frames, utilizing an off-
the-shelf tracker to specifically track and aggregate points
from moving objects. Subsequently, we sample points us-
ing a voxel size of 0.4 to construct LiDAR-view rays. Dur-
ing the dynamic-aware sampling phase, rays are sampled
based on moving bounding boxes. The sampling proce-
dure prioritizes high-confidence trackers within a range of
[-30m, 30m] along both the X and Y axes. To ensure learn-
ing efficiency, we implement the Farthest Point Sampling
(FPS) strategy, limiting the total number of rays to 2000 per
scene. Regarding the image-view ray sampling, we adopt
a straightforward strategy where the sampling probability
for each pixel is determined by the inverse of its semantic
category frequency.

6.4. Image Semantic Label Generation

We primarily follow the approach of OccNeRF [68], uti-
lizing Grounded SAM [46] for open-vocabulary semantic
segmentation. However, we observe that this method strug-
gles to segment large objects completely. To address this
limitation and improve segmentation quality, we integrate
OpenSeeD [69], a state-of-the-art segmentation framework,
specifically focusing on improving the segmentation of
“manmade” and “sky” categories. The segmentation results
from both methods are merged to form a semantic label set
comprising 15 categories (excluding ’other’ and ’other flat’
categories in [30]), aligned with the classification scheme
defined in [68].

Method Day Night Sunny Rainy
ViewFormer 43.42 28.57 42.28 44.14
+ DriveX-S 44.26 29.61 43.25 44.93
Improvement +0.84 +1.04 +0.97 +0.79

Table 9. Occupancy prediction performance (mIoU) under differ-
ent lighting and weather conditions on nuScenes validation set.

Dataset fraction Chamfer Distance (m2) ↑ Time1.0s 2.0s 3.0s Avg.

10% 2.08 2.30 2.51 2.30 1.2h
50% 1.36 1.53 1.70 1.53 5.7h

100% 0.80 0.99 1.28 1.02 11.2h

Table 10. Ablation study on data scale. All experiments are con-
ducted with the same training epochs.

7. Efficiency and Robustness Analysis
DriveX employs a shared world encoder across tasks with
minimal computational overhead, adding only 48ms latency
and 12.8M parameters for occupancy and flow prediction
task over ViewFormer [30] (150ms, 103.8M). Similarly, for
end-to-end driving task, it introduces merely 42ms latency
and 11.9M parameters over DriffusionDrive-C [38] (90ms,
56.0M). Both experiments are conducted on an H20 GPU.
Additionally, we evaluate DriveX’s robustness under dif-
ferent weather and lighting conditions in Table 9. DriveX
achieves consistent performance gains across varying envi-
ronments, confirming its practical reliability.

8. Additional Experiments
Data Scaling. A significant promise of self-supervised
world models lies in their ability to achieve consistent per-
formance improvements with increasing data scale. We
conduct this study on varying fractions of NuScenes train-
ing set. Table 10 demonstrates consistent performance gains
across all metrics as training data increases. When scaling
from 50% to 100% of the dataset, the model still achieves
substantial gains, reducing Chamfer Distance by 0.51m2.

9. Qualitative Results
We visualize some qualitative results for point cloud fore-
casting on nuScenes validation set in Figure 5. Given his-
torical latent representations and current visual observa-
tions, our DriveX model can generate future point clouds
at 0.5s intervals over a 3-second horizon. The upper part
presents a scenario where the ego-vehicle moves straight
and passes other objects. DriveX accurately models the
spatial relationships in the dynamic scene, producing pre-
cise point cloud predictions. Notably, for two distant ob-
jects with sparse point representation in the ground truth
(highlighted in orange), DriveX successfully predicts their
locations as the ego vehicle approaches them. The lower
part demonstrates a challenging scenario where the ego-
vehicle navigates through an intersection. The spatial lay-
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Figure 4. Qualitative results of image generation and semantic prediction on nuScenes validation set. For simplicity, we only visualize the
front-view camera images. Left: Raw images. Middle: Images reconstructed from BEV space latent world features. Right: Semantic
predicted from BEV space latent world features. Our model can reconstruct sharp boundaries of buildings and cars, while accurately
capturing small objects such as traffic cones.

out undergoes complex changes during the crossing pro-
cess, such as the curved roadside structure. The generated
point clouds demonstrate DriveX’s ability to understand the
related position and orientation between the ego-vehicle
and its surrounding environment. Furthermore, Figure 4
presents qualitative results for image generation and seman-
tic segmentation over a 1-second future horizon. DriveX ex-
hibits remarkable performance in scene reconstruction, ac-
curately preserving lighting conditions and producing sharp
semantic maps. While minor artifacts appear in the gener-
ated images and slight noise exists in the predicted seman-
tics, we attribute these limitations to DriveX’s lightweight
architecture, as it avoids the computational overhead of in-
tensive video diffusion models [11, 55, 56].

In Figure 6 and Figure 7, we present qualitative results
for two downstream tasks: occupancy prediction with flow
estimation and end-to-end driving. As demonstrated in Fig-
ure 6, ViewFormer accurately predicts both occupancy and
motion flow for static environment elements and dynamic
agents (pedestrians, vehicles, etc.). Figure 7 illustrates the
end-to-end driving performance, where our DriveX exhibits
robust behavior across diverse driving scenarios. The model
successfully executes various driving maneuvers, including
breaking, lane changes, intersection negotiation, and turns.
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Figure 5. Qualitative results of point clouds forecasting on nuScenes validation set. Left: Current six-view camera images. Right: 3-
second future point cloud predictions, where ground truth points (top) and predicted points (bottom) are visualized. The first row shows
a straight driving scenario, while the second row presents a complex intersection crossing scenario. Orange rectangles highlight two
challenging distant objects from the ego-vehicle.
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Figure 6. Qualitative results of occupancy and occupancy flow prediction on the NuScenes validation set. Left: Input visual images.
Middle: Occupancy prediction results. Right: Occupancy flow prediction results, where dynamic occupancy is visualized using a color
gradient from dark red to red based on flow magnitude.
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Figure 7. Qualitative results of end-to-end driving on NAVSIM test set. DriveX successfully handles challenging scenarios including
breaking, lane changing, intersection negotiation, and turning maneuvers.
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