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Table 7. Dataset statistics. We calculate the total number of
frames and duration and the number of textual descriptions for

each dataset.

Dataset Frame(M) Duration(h) Text
BABEL [28] 2.25 20.84 9,742
BEATV2 [20] 9.43 87.29 -
CIRCLE [1] 1.07 991 -
EgoBody [44] 0.40 3.70 -
GRAB [30] 0.40 3.74 -
HIMO [21] 1.14 10.59 2,711

HumanML3D [10] 6.09 56.42 29,226
HuMMan [3] 0.69 6.35 6,264
IMHD [46] 0.13 1.21 308
MPI-INF-3DHP [23] 0.13 1.22 -
InterHuman [ 18] 2.02 18.69 -
Total 23.75 219.96 48,251

In this supplementary material, we provide more infor-
mation that could not be included in the main manuscript
because of space limit. We first provide more details about
our constructed dataset and implementations in Sec. 8 and 9.
More results and ablation studies are conducted in Sec. 10
Sec. 11 shows the visualization results of generated motion
corresponding to different text inputs. Finally, we discuss
limitations of our proposed GenM? in Sec. 12.

8. Details of the Dataset

We collected and processed 11 high-quality motion cap-
ture datasets, including CIRCLE [I1], Egobody [44],
GRAB [30], HIMO [21], IMHD [46], BABEL [28], Hu-
manML3D [10], HuMMan [3], MPI-INF-3DHP [23], Inter-
Human [18] and BEATv2 [20]. All datasets were processed
at 30 fps, with the duration of each sample ranging from 2 to
10 seconds. Tab. 7 illustrates the number of frames included
in each dataset after processing.

Pose Representation We standardized all datasets to
align with the format of the HumanML3D dataset. A pose p
is represented as a tuple consisting of multiple components:
(r“, rTorrY 3P, 50,57, cf). Here, 7* € R represents the
root angular velocity along the Y-axis, while (r%,r* € R)
describe the root’s linear velocities on the XZ-plane. The
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Figure 8. Visualization of data distribution after dimensionality
reduction using T-SNE algorithm.

root height is denoted as r¥ € R. The joint-related at-
tributes include j» € R%¥,j* € R%, j" € RY, which re-
spectively correspond to the positions, velocities, and rota-
tions of joints in the root space, where j indicates the total
number of joints. Additionally, c/ € R* is a set of binary
features, derived by thresholding the velocities of the heel
and toe joints to highlight ground contact points.

Dataset Distribution We randomly sampled 1,000 mo-
tion sequences from each dataset and reduced their dimen-
sionality to two using the T-SNE algorithm. Fig. 8 presents
a visualization of the data distribution after dimensional-
ity reduction, which clearly demonstrates significant differ-
ences in data distribution across the datasets.

Text Label HumanML3D, HuMMan, and HIMO datasets
provide motion sequences paired with corresponding text
labels. For these datasets, we adhered to their original
splits and utilized the provided textual annotations. HDMI
is a dataset focused on human-object interaction. For
this dataset, we manually segmented the motion sequences
based on video content. During the text annotation process,
we described the human motions and the specific interac-
tions with objects in detail. For example: “The person is
holding a pan with their left hand at chest level and a spat-
ula with their right hand, repeatedly stirring. Simultane-
ously, they sway their body from side to side, with the left
foot half a step ahead of the right, and their head looking at



the pan.”

The BABEL dataset provides action category informa-
tion for each subsequence. To process this dataset, we first
divided the overlapping subsequences into motion segments
ranging from 2 to 10 seconds in duration based on their
lengths. Subsequently, we used ChatGLM [7] to automati-
cally generate a concise textual description of the actions in
each sequence, arranging the action categories in temporal
order. The prompt for ChatGLM was as follows:

This process ensures accurate and consistent textual de-
scriptions across datasets.

9. Implementation Details

Our model is implemented using PyTorch 2.0 and trained
on Nvidia RTX-4090 GPUs. The architecture consists of
two main components: MEVQ-VAE and Multi-path Motion
Transformer. In MEVQ-VAE, motion sequences are down-
sampled by a factor of four during discretization, reducing
temporal resolution. Both the encoder and decoder employ
a multi-expert architecture with a default of four experts.
The codebook is designed with 8,192 entries, each of 32
dimensions, providing a rich discrete representation space
for motion features. To address codebook collapse, where
large codebooks risk underutilization, we adopt a factorized
code approach [38], decoupling code lookup and embed-
ding, and use moving averages for updates while resetting
inactive codes to enhance utilization. During training, the
loss weight parameter (3 is set to 1, balancing reconstruc-
tion and commitment losses to ensure effective encoding.

The Multi-path Motion Transformer comprises of 18
layers: the first nine layers utilize standard attention mech-
anisms for initial feature extraction, while the latter nine
layers implement a multiway transformer with multiple ex-
perts. All attention computations use 16 heads, each with a
dimension of 64. For both pretraining and text-conditional
training, we use a batch size of 160 and the AdamW opti-
mizer, training the model for 120,000 iterations. The learn-
ing rate is set to 0.0002, following a warm-up and cosine an-
nealing decay strategy to facilitate rapid adaptation in early
training.

Table 8. Inference speed per sample (on a RTX4090 GPU) with
different iteration settings during masked decoding.

Method ‘ FID Infer. time (ms) R-Precision Diversity
GenM? (iter.=1) 2.242 23.73 0.679 8.477
GenM? (iter.=5) 0.054 67.49 0.785 9.375
GenM? (iter.=10) 0.046 113.22 0.804 9.675
GenM? (iter.=15) 0.060 188.12 0.805 9.719
T2M-GPT ‘ 0.160 108.03 0.770 9.653

Table 9. Results on HumanML3D under varying data proportions.

Data Proportion \ 0% 35% 70% 100%
FID | 0071 0.060 0.050 0.046

Table 10. Results on HumanML3D (annotated by FineMotion).

Method FID R.Topl R.Top2 R.Top3  MMDist.  Diversity
MMM 24.7 0.060 0.113 0.159 5.85 6.01
GenM?® 17.2 0.072 0.135 0.191 5.30 6.00
GenM?>* 12.9 0.087 0.154 0.218 5.01 6.25

10. More Results

Inference Speed During decoding, all tokens are decoded
in parallel at each iteration. Tab. 8 shows how iteration
count (10 for default settings) relates to inference time, and
compares this with the AR model T2M-GPT [40].

Influence of Dataset Size We have evaluated our back-
bone pre-training on varying proportions of the dataset (Hu-
manML3D dataset is fully used). We can conclude that the
quality of the generation scales with the size of dataset (see
Tab. 9). We believe that integrating additional motion data
can unlock further model potential, which will be the focus
of our future work.

Zero-shot Generation We added comparisons on unseen
HumanML3D annotations from FineMotion' (see Tab. 10)
to further prove GenM3*’s generalization ability. Since the
re-annotated descriptions differ significantly from those in
the original HumanML3D, the zero-shot generation perfor-
mance is generally not ideal. However, our method achieves
better results compared to MMM [27]. By comparing the
results of GenM>* and GenM?, it can be concluded that
training on a larger dataset (with more text annotations
and more motion data) improves the model’s generalization
ability.

11. Visualization

We provide more qualitative results from motion genera-
tion experiments using text inputs from the HumanML3D

lhtt ps://github.com/BizhuWu/FineMotion
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test set (Fig. 9), the HuMMan test set (Fig. 10), and GPT-
generated textual descriptions (Fig. 11).

12. Limitation

Our approach has two main limitations. First, although we
enhanced the dataset by adding text labels for various mo-
tion types, the number of these labels remains limited. As
a result, our method struggles to generate accurate motions
for descriptions that fall outside the dataset’s text distribu-
tion. In the future, we plan to explore ways to leverage
additional text-motion pair data or integrate video-text pairs
to enable the model to better comprehend diverse textual
descriptions. Second, our current approach focuses primar-
ily on body motion generation, overlooking the generation
of full-body motions, such as fine-grained movements of
fingers and facial expressions. In future work, we plan to
collect and process more comprehensive datasets to enable
MMGPT to generate more detailed and precise motions for
all human joints.
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Text: a person appears to be doing a dance. Text: a man walks forward, then squats to pick
something up with both hands, stands back up,
and resumes walking.

Text: a man walks forward, then turns around and Text: a person walks up stairs turns left and
walks back before facing back and standing still. walks back down stairs.
Text: the person was pushed but did not fall. Text: shaking legs side to side.

Text: kick left leg step back. Text: the man is doing starjumps.

Text: a person rubs their hands together. Text: a person waves his hands.

Text: a person throws something with their Text: a person turns to his right and paces back
right hand. and forth.

Text: person stretches both arms up and then Text: the person does a couple of small kicks
put arms down. with his left leg.

Figure 9. Visualizations of generated motion samples on HumanML3D [10] test set.
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Text: Stand with your feet shoulder-width apart and your arms
extended straight up above your head. Lower your body by bending
your knees and pushing your hips back as if you were sitting in
a chair. Keep your chest up, your back straight and your thighs
parallel to the ground.

Text: Stand while holding hands above head and keeping arms
straight. Lower both arms to pointing downwards while squating
down.

Text: Stand with your feet hip-width apart, with your arms bent
to the sides of the body and hands at the waist. Lift your right
foot to the back and then put back down to the ground. Keep both
legs straight.

e

Text: Lower your body into a full squat position by bending your
knees and hips. Your hips should be lower than your knees.
Straighten your legs and hips and rise back up to the starting
position.

Text: Stand with your feet hip-width apart, with your arms bent
to the sides of the body and hands at the waist. Lift your left
foot to the back and then put back down to the ground. Keep both
legs straight.

Text: Stand with the feet shoulder-width apart. Raise both arms
straight in front of the body and parellel to the ground. Bend
both knees to lower your body until the thighs are parellel to
the ground.

Figure 10. Visualizations of generated motion samples on HuMMan [3] test set.
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Text: play golf

P

Text: She claps her hands together loudly, the sound echoing
through the room.
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Text: She waves her arms wildly, signaling for attention with
exaggerated gestures.

)

Text: He leaps across the stream, landing with a heavy thud.

et

Text: He jumps forward with a powerful leap.

e

Text: He kicks the ball high into the air, his leg extending
fully in a fluid motion.

Figure 11. Visualizations of generated motion samples on GPT-generated textual descriptions.
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