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Setting VOC20 Context59 Context60 Stuff ADE

ProxyCLIP
336-336-112 79.7 34.4 38.1 25.7 19.4
448-336-224 78.5 34.8 38.3 25.7 19.3
576-336-224 73.4 33.8 37.0 24.6 19.0

Trident w.o SAM Refine
336-336-112 83.7 35.8 39.6 27.0 20.7
448-336-224 83.3 37.0 40.7 27.6 20.6
576-336-224 82.0 37.2 40.9 27.5 20.9

Table 1. Ablation for Different Input Resolution. SAM refine-
ment is excluded here in Trident to clearly show the effect of the
proposed framework. The setting is an abbreviation of shorter
side - window size - stride.

1. More Ablations
On the Effect of Input Resolution. To verify the claim
that Segment-then-Splice paradigm might diminish with in-
creased resolution, we conducted ablation studies on more
datasets for ProxyCLIP [4], and our Trident. The detailed
results are presented in Table 1. ProxyCLIP exhibits dete-
riorating performance as resolution increases; specifically,
its performance on the VOC20 [1] dataset decreases from
79.7% to 73.4% mIoU when the input resolution is in-
creased from 336 to 576 for the shorter side of the im-
age. This trend is consistent across other datasets, as the
receptive field becomes more constrained in the Segment-
then-Splice paradigm with increased resolution. In contrast,
our Splice-then-Segment paradigm benefits from increased
resolution, thereby obtaining better performance with in-
creased resolution. A notable exception is the VOC20
dataset, where the performance of our method also declines
due to baseline’s significantly reduced effectiveness.
On SAM’s Feature in Correlation Matrix. We provide
a comprehensive ablation in Tab. 2 comparing different
SAM [3] image encoder features (q, k, v, x) in the last
transformer layer on ProxyCLIP without refinement. Re-
sults show our proposed combination of cosine similarity
and attention weights (Eq.5 in main paper) performs best,
surpassing individual feature’s cosine similarity.

2. More details on SAM Refinement.
For SAM refinement, we only generate prompts for classes
with activation scores above a preset threshold (e.g. 0.2).
Additionally, we filter out extremely small regions (e.g. less

Type V21 C60 Obj. V20 C59 Stf. City ADE Avg.

q-q 49.8 28.8 30.3 76.4 32.7 21.9 31.9 15.9 35.9
k-k 24.4 13.8 11.6 62.7 16.8 10.4 2.7 5.3 18.5
v-v 60.6 35.0 36.7 80.6 38.2 26.2 36.7 19.5 41.7
x-x 63.4 36.8 38.1 82.3 40.2 27.1 38.8 20.2 43.4
Aff. 64.5 37.2 39.5 83.7 40.9 27.6 40.4 20.9 44.3

Table 2. Ablation of SAM’s feature in correlation matrix.

DINO SAM Ref. #Params. Mem. Thru.
(M) (MB) (imgs/sec)

CLIP-B/16 + SAM-B/16
149 672 118.8

✓ 234 851 68.5
✓ ✓ 323 2501 15.3
✓ ✓ ✓ 364 2526 10.0

OpenCLIP-H/14 + SAM-H/16
986 2308 28.2

✓ 1071 2484 22.4
✓ ✓ 1708 5804 6.4
✓ ✓ ✓ 1749 5827 5.0

Table 3. Efficiency Analysis for Trident Framework. The infer-
ence latency is tested on RTX 4090 GPU with FP16 precision.

than 900 pixels) before prompting SAM. These tricks sig-
nificantly reduce the number of prompts—for COCO Ob-
ject dataset, we only use 4.21 box/point prompts per image
on average. For intuitive understanding, we present the gen-
erated prompts (Fig. 1b) for the case used in Fig.3 of main
paper.

Additionally, we show why using only mask or box/point
prompts degrades performance in a special case (Fig. 1a).
Sub-optimal activations cause mask prompts to simultane-
ously cover foreground and background regions, creating
ambiguity for SAM’s decoder. Box/point prompts only
highlight partial objects due to their sparse encoding. For
a qualitative comparison of the SAM refinement, we visual-
ize our segmentation results against the ProxyCLIP baseline
in Fig. 1c.

3. Efficiency Analysis

As the proposed Trident integrates three foundational mod-
els, we conducted an analysis of their impact on inference
costs. We adopted an image resolution of 448 × 448 and
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Figure 1. Additional analysis of our SAM refinement module. (a). Ablation study showing that a combination of box/point and mask
prompts is superior to using either alone. (b). Illustration of the automatically generated prompts for the example in Fig. 3 of main paper.
(c). Qualitative comparison against the ProxyCLIP baseline under with or without SAM refinement setting.
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Figure 2. (a). Activation map and segmentation result of Trident model for the case presented in Fig.2 of the main paper. (b). Qualitative
comparison between SAM’s attention(left) vs. our affinity(right).

utilized a sliding window with a size of 336 and stride of
224 for CLIP and DINO. For SAM, the input resolution was
set to 1024. The throughput was tested on an RTX 4090
GPU using FP16 precision for all models. The detailed re-
sults are reported in Tab. 3, which includes results for both
the base and huge versions of these models. The introduc-
tion of SAM resulted in a significant increase in GPU mem-
ory usage and processing time, primarily due to its demand
for high-resolution inputs. Additionally, the incorporation
of SAM refinement led to a slight increase in both GPU
memory usage and time cost.

4. Additional Comparison with LVLMs

Recent advancements in Large Vision-Language Models
(LVLMs) that combine Large Language Models (LLMs)
with vision foundation models (e.g., SAM [3]) have demon-
strated promising capabilities for open-vocabulary segmen-
tation tasks. To provide a more comprehensive analysis
of our proposed model, we conducted additional compar-
isons with recent LVLMs [5, 9] that are capable of open-
vocabulary segmentation. The detailed results are presented

Method VOC20 Context59 ADE150 Avg. FPS
LaSagnA[Arxiv24’04] 69.8 46.1 14.3 43.4 -
Text4Seg[ICLR’25] 76.5 52.5 16.5 48.5 0.14
Trident 88.7 44.4 26.7 53.2 5.0

Table 4. Comparison with recent Large Vision-Language Models
(LVLMs). We report the mIoU (%) and inference latency to evalu-
ate the performance of different models. FPS measurements were
conducted on an NVIDIA RTX 4090 GPU.

in Table 4. Although all compared models integrate SAM
for segmentation, our Trident framework establishes signif-
icantly better performance. Compared to Text4Seg [5], our
Trident achieves an average mIoU improvement of 4.7%
while being approximately 35 times faster in throughput.

5. Qualitative Comparison
In Fig. 2a, we present qualitative results of our method for
the case depicted in Fig. 2 of the main paper. Compared to
the traditional splice-then-segment paradigm, our approach
eliminates the window panel effect and yields more fine-
grained segmentation results. Fig. 2b compares SAM’s at-



tention(left) vs. our affinity(right) for the given case in
Fig. 3 of the main paper. The affinity matrix only pre-
serve sematic-consistent regions in attention matrix (e.g. at-
tention weights include the snail region in left image while
affinity weights not), domentrating better semantic consis-
tancy in feature aggragation procedure.

Fig. 3 presents qualitative comparisons between Trident
and previous SOTA methods, all utilizing the CLIP-B/16
architecture. The visual results highlight Trident’s supe-
rior performance in two aspects: improved semantic con-
sistency in object recognition and more precise segmenta-
tion boundary delineation. These advantages are particu-
larly pronounced in complex scenes from Context60 and
Cityscapes benchmarks. In Fig. 4, we present additional
qualitative comparisons with previous SOTA methods on
the VOC21, Context60, COCO Object, and Cityscapes
benchmarks, all under the same ViT-B/16 setting. Our Tri-
dent framework demonstrates improved semantic consis-
tency, although some masks yield incorrect classifications.

6. Details of Application to LVLMs

Recent advancements in API [11] development demonstrate
that vision-language models, such as CLIP, can serve as
auxiliary models to enhance the performance of Large Vi-
sion Language Models (LVLMs). Specifically, these mod-
els generate text-guided attention heatmaps by computing
the similarity between textual descriptions and dense image
feature maps, subsequently modulating the pixel values of
the original image. To derive the similarity map between
text and the dense image feature map, sophisticated decom-
position mechanisms are employed. Initially, the similarity
is calculated between the text embeddings and the classifi-
cation token within CLIP’s image encoder. This similarity
is then propagated to other visual tokens using the atten-
tion scores between the classification token and the visual
tokens. We observe that the image feature map can be ef-
fectively substituted with the dense feature map extracted
by our Trident. This substitution results in enhanced perfor-
mance.

Following API, We employ the LLaVA-1.5-13B [8]
across five multi-modality datasets: MMMU [13], MM-
Vet [12], MME [2], LLaVA-Wild [7], and POPE [6] to sub-
stantiate our claims. For MM-Vet and LLaVA-Wild, we uti-
lize a GPT-based evaluation tool to score the responses. For
MMMU and MME, we report accuracy based on the match-
ing accuracy between LVLM’s responses and the ground
truth. For POPE, we present the F1-Score using its random
split setting. Due to the unavailability of official API im-
plementations for MMMU, MME, and POPE, we provide
results based on our re-implementation.

7. Limitations
Although Trident achieves superior performance, it re-
quires three models during inference, which compromises
efficiency compared to previous methods that utilize only
CLIP. We believe unsupervised learning methods, such as
CLIP-DINOiser [10], could mitigate this efficiency issue
while retaining the strengths of these three models.
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Figure 3. Qualitative comparison with previous training-free open vocabulary segmentation methods.
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Figure 4. Additional visualization comparison with previous SOTA training-free methods.
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