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Figure 9. Formulation of IMBA distance. (a) Unconditional dis-
tribution shifts toward head concepts due to data imbalance, lead-
ing to a smaller IMBA distance D for head concepts. (b) Relation-
ships between IMBA distance and diffusion loss during training.

A. Formulation of IMBA Distance

Based on the above analysis, we can formulate the IMBA
distance under the imbalanced data during training in Fig-
ure 9. As shown in Figure (a), starting from the random
noise x; in the latent space, conditional distribution points
to different data distributions with different color based on
different concepts. Due to data imbalance, concept y; has
far more samples than other concepts. Since the uncondi-
tional distribution is weighted by all samples equally during
training, it will shift toward concepts with more samples
like the green arrow, leading to a smaller IMBA distance
D;. In the training set, the ratio of samples between head
and tail concepts often reaches a factor of thousands, far
exceeding the ratio shown in the figure, indicating a much
more severe data imbalance issue and more pronounced pat-
tern of IMBA distance. As shown in Figure (b), original dif-
fusion loss represents the distance between the conditional
distribution and the predicted conditional distribution, and
IMBA distance represents the distance between the pre-
dicted conditional distribution and the unconditional distri-
bution. Specifically, when IMBA distance is implemented
with the L2 norm, it is equivalent to the unconditional loss.

B. Ablation study
B.1. Stability of IMBA Distance

In Figure 10, we calculate the IMBA distance of the same
prompt on models with different size, architecture and
noise. We find it is stable across all settings.

B.2. Comparison with Frequecy-based Method

Since the text is a joint distribution of multiple concepts, it
is difficult to calculate weights from a frequency perspec-
tive, and there is little concept-balancing work for text-to-
image generation. Therefore, we compare IMBA loss with
a frequency based method on class-image [9]. We sample
5 concepts each from the head and tail concepts and com-
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Figure 10. IMBA distance of different models and noises.

Loss weight Baseline Frequency-based Ours
Success rate 33.3% 49.3% 65.7%
CLIP Score 0.3113 0.3101 0.3218

Table 4. The performance of different balancing methods.

Loss weight Baseline Sample-wise Token-wise
Success rate 32% 64% 72%
CLIP Score 0.2924 0.3022 0.3106

Table 5. The performance of models with different loss weight.

"A grand piano on the submarine's top deck plays under the
open sky, its music merging with the ocean waves."

"A grand piano on the submarine's deck
surrounded by the endless sca.”

Sample-wi Token-wise

Figure 11. The performance of models with different loss weight.

bine the data containing these concepts in the training set
into a new subset. We then finetune the model on the sub-
set using the frequency-based and our method respectively.
Meanwhile, we pair the 10 concepts to generate 5 captions
for each pair as the test set. As shown in the Table 4, our
method outperforms the frequency-based method.

B.3. Comparison with Sample-wise Loss Weight

We finetune the same model on the imbalanced “piano-
submarine” subset for 10K steps with sample-wise and our
token-wise loss weight respectively. As shown in Table 5
and Figure 11, all results are evaluated on 25 captions. And
sample-wise loss weight performs better than the baseline
due to the reweight balancing. Meanwhile, token-wise loss
weight achieves the best performance since it applies more
fine-grained weights on different image regions according
to concepts.

B.4. Hyper-parameters of IMBA Loss
We train the model on the ”piano-submarine” subset to con-

duct ablation experiments on the value of . Specifically,
when v = 0.0, IMBA loss is equivalent to the original dif-
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Figure 12. Results from models trained with different ~.

“A girl dances to the music next to the gramophone.”

i

AT g e S
Finetune w/
IMBA loss

o T
Finetune w/

Before finetuning diffusion loss
1rust

GT image

Figure 13. IMBA distance before and after finetuning.

fusion loss. When v = 2.0, the value of the IMBA distance
equals the value of the unconditional loss. As shown in Fig-
ure 12, when ~ approaches 0.0, the concept composition
ability of the model diminishes, as the semantic of the sub-
marine in Figure(a) almost disappears. When ~ approaches
2.0, the model exhibits severe color shift issues as seen in
Figure(b). We chose v = 0.8 based on these observations.

B.5. IMBA Distance after Training.

We resumed training a model for 3 epochs using diffusion
loss, and then fine-tuned it separately with diffusion loss
and IMBA loss. The difference in IMBA distance between
the two models after fine-tuning is shown in Figure 13. It
can be observed that, due to concept balancing during the
training process with IMBA loss, the IMBA distance after
training with IMBA loss pays more attention to tail con-
cepts (red words). Consequently, the IMBA distance in the
corresponding regions (green boxes) is smaller compared
to training with diffusion loss.

C. More Experiment Results of the Model Size

When testing different model sizes on the same dataset in
Section 3, we observed that even with significant differ-
ences in model size, the generated images exhibit highly
similar structural features given the same initial noise and
text prompts, as illustrated in Figure 14. This suggests that
once a model reaches a certain size, the dataset itself be-
comes more influential in determining the generated images
rather than the model capacity. Larger models indeed have
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Figure 14. Generation results of models with different sizes from

the same initial noise.

better convergence capabilities, but they do not dictate the
high-dimensional semantics or concept composition abili-
ties of the images.



